A method for non-parametric regression effects is applied to spatially configured data, using a generalised additive form that allows regression effects to vary over areas. The focus is on discrete outcomes in disease mapping but can be adapted to metric outcomes. Specifically a mixed model is proposed that combines a local general additive model (GAM) element for each area with a spatially filtered GAM effect. Modifications are discussed that allow for the impact of outliers on the spatial regression. The paper uses a Bayesian approach that places random walk priors on the various smooth functions, Gamma priors on inverse scale parameters and Dirichlet priors on mixing parameters. The model is illustrated with applications to lip cancer mortality in Scottish counties, where there is one predictor with regression impact modelled non-parametrically, and suicide deaths in 32 London boroughs, where two predictors are taken to follow a spatial GAM form. (c) 2004 Elsevier B.V. All rights reserved.
机构:
City Univ Hong Kong, Dept Architecture & Civil Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Architecture & Civil Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
Shi, Chao
Wang, Yu
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Architecture & Civil Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Architecture & Civil Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China