Iteratively reweighted l1-penalized robust regression

被引:8
|
作者
Pan, Xiaoou [1 ]
Sun, Qiang [2 ]
Zhou, Wen-Xin [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Toronto, Dept Stat Sci, Toronto, ON M5S 3G3, Canada
来源
ELECTRONIC JOURNAL OF STATISTICS | 2021年 / 15卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Adaptive Huber regression; convex relaxation; heavy-tailed noise; nonconvex regularization; optimization error; oracle property; oracle rate; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; MODEL SELECTION; ADAPTIVE LASSO; REGULARIZATION; RECOVERY; CONSISTENCY; INEQUALITIES; BOUNDS; SLOPE;
D O I
10.1214/21-EJS1862
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates tradeoffs among optimization errors, statistical rates of convergence and the effect of heavy-tailed errors for high-dimensional robust regression with nonconvex regularization. When the additive errors in linear models have only bounded second moments, we show that iteratively reweighted l(1)-penalized adaptive Huber regression estimator satisfies exponential deviation bounds and oracle properties, including the oracle convergence rate and variable selection consistency, under a weak beta-min condition. Computationally, we need as many as O(log s + log log d) iterations to reach such an oracle estimator, where s and d denote the sparsity and ambient dimension, respectively. Extension to a general class of robust loss functions is also considered. Numerical studies lend strong support to our methodology and theory.
引用
收藏
页码:3287 / 3348
页数:62
相关论文
共 50 条
  • [21] Inferring large graphs using l1-penalized likelihood
    Champion, Magali
    Picheny, Victor
    Vignes, Matthieu
    [J]. STATISTICS AND COMPUTING, 2018, 28 (04) : 905 - 921
  • [22] L1-penalized AUC-optimization with a surrogate loss
    Kim, Hyungwoo
    Shin, Seung Jun
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2024, 31 (02)
  • [23] ITERATIVELY REWEIGHTED PENALIZED LEAST-SQUARES WITH CONCOMITANT SCALE ESTIMATION
    CUNNINGHAM, JK
    [J]. AMERICAN STATISTICAL ASSOCIATION 1988 PROCEEDINGS OF THE STATISTICAL COMPUTING SECTION, 1988, : 159 - 161
  • [24] Selective iteratively reweighted quantile regression for baseline correction
    Liu, Xinbo
    Zhang, Zhimin
    Sousa, Pedro F. M.
    Chen, Chen
    Ouyang, Meilan
    Wei, Yangchao
    Liang, Yizeng
    Chen, Yong
    Zhang, Chaoping
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (07) : 1985 - 1998
  • [25] Selective iteratively reweighted quantile regression for baseline correction
    Xinbo Liu
    Zhimin Zhang
    Pedro F. M. Sousa
    Chen Chen
    Meilan Ouyang
    Yangchao Wei
    Yizeng Liang
    Yong Chen
    Chaoping Zhang
    [J]. Analytical and Bioanalytical Chemistry, 2014, 406 : 1985 - 1998
  • [26] Weighted l1-Penalized Corrected Quantile Regression for High-Dimensional Temporally Dependent Measurement Errors
    Bhattacharjee, Monika
    Chakraborty, Nilanjan
    Koul, Hira L.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (5-6) : 442 - 473
  • [27] l1-Penalized Linear Mixed-Effects Models for BCI
    Fazli, Siamac
    Danoczy, Marton
    Schelldorfer, Juerg
    Mueller, Klaus-Robert
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 26 - +
  • [28] Efficient iteratively reweighted algorithms for robust hyperbolic localization
    Zhai, Ruixin
    Xiong, Wenxin
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (04): : 3241 - 3262
  • [29] ROBUST ITERATIVELY REWEIGHTED LASSO FOR SPARSE TENSOR FACTORIZATIONS
    Kim, Hyon-Jung
    Ollila, Esa
    Koivunen, Visa
    Poor, H. Vincent
    [J]. 2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 420 - 423
  • [30] Robust spectrotemporal decomposition by iteratively reweighted least squares
    Ba, Demba
    Babadi, Behtash
    Purdon, Patrick L.
    Brown, Emery N.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (50) : E5336 - E5345