L1-penalized AUC-optimization with a surrogate loss

被引:0
|
作者
Kim, Hyungwoo [1 ]
Shin, Seung Jun [2 ]
机构
[1] Pukyong Natl Univ, Dept Stat & Data Sci, 45 Yongso Ro, Pusan 04853, Guam, South Korea
[2] Korea Univ, Dept Stat, Seoul 136701, South Korea
基金
新加坡国家研究基金会;
关键词
AUC-optimization; AUC consistency; variable selection; L-1-norm penalty; clustering and proximal gradient descent; SUPPORT; AREA;
D O I
10.29220/CSAM.2024.31.2.203
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The area under the ROC curve (AUC) is one of the most common criteria used to measure the overall performance of binary classifiers for a wide range of machine learning problems. In this article, we propose a L-1 -penalized AUC-optimization classifier that directly maximizes the AUC for high -dimensional data. Toward this, we employ the AUC-consistent surrogate loss function and combine the L-1 -norm penalty which enables us to estimate coefficients and select informative variables simultaneously. In addition, we develop an efficient optimization algorithm by adopting k -means clustering and proximal gradient descent which enjoys computational advantages to obtain solutions for the proposed method. Numerical simulation studies demonstrate that the proposed method shows promising performance in terms of prediction accuracy, variable selectivity, and computational costs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] On the performance of algorithms for the minimization of l1-penalized functionals
    Loris, Ignace
    [J]. INVERSE PROBLEMS, 2009, 25 (03)
  • [2] Feature Selection via l1-Penalized Squared-Loss Mutual Information
    Jitkrittum, Wittawat
    Hachiya, Hirotaka
    Sugiyama, Masashi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (07) : 1513 - 1524
  • [3] l1-Penalized censored Gaussian graphical model
    Augugliaro, Luigi
    Abbruzzo, Antonino
    Vinciotti, Veronica
    [J]. BIOSTATISTICS, 2020, 21 (02) : E1 - E16
  • [4] Iteratively reweighted l1-penalized robust regression
    Pan, Xiaoou
    Sun, Qiang
    Zhou, Wen-Xin
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 3287 - 3348
  • [5] Learning l1-Penalized Logistic Regressions with Smooth Approximation
    Klimaszewski, Jacek
    Sklyar, Michal
    Korzen, Marcin
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2017, : 126 - 130
  • [6] Generalized l1-penalized quantile regression with linear constraints
    Liu, Yongxin
    Zeng, Peng
    Lin, Lu
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142
  • [7] L1-penalized fraud detection support vector machines
    Park, Minhyoung
    Kim, Hyungwoo
    Shin, Seung Jun
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (02) : 420 - 439
  • [8] Inferring large graphs using l1-penalized likelihood
    Champion, Magali
    Picheny, Victor
    Vignes, Matthieu
    [J]. STATISTICS AND COMPUTING, 2018, 28 (04) : 905 - 921
  • [9] ASYMPTOTIC RISK AND PHASE TRANSITION OF l1-PENALIZED ROBUST ESTIMATOR
    Huang, Hanwen
    [J]. ANNALS OF STATISTICS, 2020, 48 (05): : 3090 - 3111
  • [10] l1-Penalized Linear Mixed-Effects Models for BCI
    Fazli, Siamac
    Danoczy, Marton
    Schelldorfer, Juerg
    Mueller, Klaus-Robert
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 26 - +