L1-penalized AUC-optimization with a surrogate loss

被引:0
|
作者
Kim, Hyungwoo [1 ]
Shin, Seung Jun [2 ]
机构
[1] Pukyong Natl Univ, Dept Stat & Data Sci, 45 Yongso Ro, Pusan 04853, Guam, South Korea
[2] Korea Univ, Dept Stat, Seoul 136701, South Korea
基金
新加坡国家研究基金会;
关键词
AUC-optimization; AUC consistency; variable selection; L-1-norm penalty; clustering and proximal gradient descent; SUPPORT; AREA;
D O I
10.29220/CSAM.2024.31.2.203
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The area under the ROC curve (AUC) is one of the most common criteria used to measure the overall performance of binary classifiers for a wide range of machine learning problems. In this article, we propose a L-1 -penalized AUC-optimization classifier that directly maximizes the AUC for high -dimensional data. Toward this, we employ the AUC-consistent surrogate loss function and combine the L-1 -norm penalty which enables us to estimate coefficients and select informative variables simultaneously. In addition, we develop an efficient optimization algorithm by adopting k -means clustering and proximal gradient descent which enjoys computational advantages to obtain solutions for the proposed method. Numerical simulation studies demonstrate that the proposed method shows promising performance in terms of prediction accuracy, variable selectivity, and computational costs.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 50 条
  • [21] l1-Penalized Pairwise Difference Estimation for a High-Dimensional Censored Regression Model
    Pan, Zhewen
    Xie, Jianhui
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (02) : 283 - 297
  • [22] Regularization paths of L1-penalized ROC Curve-Optimizing Support Vector Machines
    Kim, Hyungwoo
    Sohn, Insuk
    Shin, Seung Jun
    [J]. STAT, 2021, 10 (01):
  • [23] Robust detection of epileptic seizures based on L1-penalized robust regression of EEG signals
    Hussein, Ramy
    Elgendi, Mohamed
    Wang, Z. Jane
    Ward, Rabab K.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 104 : 153 - 167
  • [24] Weighted l1-penalized corrected quantile regression for high dimensional measurement error models
    Kaul, Abhishek
    Koul, Hira. L.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 140 : 72 - 91
  • [25] The adaptive L1-penalized LAD regression for partially linear single-index models
    Yang, Hu
    Yang, Jing
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 151 : 73 - 89
  • [26] l1-penalized linear mixed-effects models for high dimensional data with application to BCI
    Fazli, Siamac
    Danoczy, Marton
    Schelldorfer, Juerg
    Mueller, Klaus-Robert
    [J]. NEUROIMAGE, 2011, 56 (04) : 2100 - 2108
  • [27] High-dimensional covariance estimation by minimizing l1-penalized log-determinant divergence
    Ravikumar, Pradeep
    Wainwright, Martin J.
    Raskutti, Garvesh
    Yu, Bin
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 935 - 980
  • [28] Inferring large graphs using l1-penalized likelihood (vol 28, pg 905, 2018)
    Champion, Magali
    Picheny, Victor
    Vignes, Matthieu
    [J]. STATISTICS AND COMPUTING, 2018, 28 (06) : 1231 - 1231
  • [29] STOCHASTIC AUC OPTIMIZATION WITH GENERAL LOSS
    Yang, Zhenhuan
    Shen, Wei
    Ying, Yiming
    Yuan, Xiaoming
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (08) : 4191 - 4212
  • [30] Weighted l1-Penalized Corrected Quantile Regression for High-Dimensional Temporally Dependent Measurement Errors
    Bhattacharjee, Monika
    Chakraborty, Nilanjan
    Koul, Hira L.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (5-6) : 442 - 473