Towards Reproducible Machine Learning Research in Information Retrieval

被引:2
|
作者
Lucic, Ana [1 ]
Bleeker, Maurits [1 ]
de Rijke, Maarten [1 ]
Sinha, Koustuv [2 ]
Jullien, Sami [1 ]
Stojnic, Robert [3 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
[2] McGill Univ, Montreal, PQ, Canada
[3] Facebook AI Res, Menlo Pk, CA USA
关键词
Information retrieval; Reproducibility;
D O I
10.1145/3477495.3532686
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While recent progress in the field of machine learning (ML) and information retrieval (IR) has been significant, the reproducibility of these cutting-edge results is often lacking, with many submissions failing to provide the necessary information in order to ensure subsequent reproducibility [20, 21, 32]. Despite the introduction of self-check mechanisms before submission (such as the Reproducibility Checklist [31]), criteria for evaluating reproducibility during reviewing at several major conferences [4, 11, 28], artifact review and badging framework [18], and dedicated reproducibility tracks and challenges at major IR conferences [8, 14-17], the motivation for executing reproducible research is lacking in the broader information community. We propose this tutorial as a gentle introduction to help ensure reproducible research in IR, with a specific emphasis on ML aspects of IR research.
引用
收藏
页码:3459 / 3461
页数:3
相关论文
共 50 条
  • [21] MACHINE RETRIEVAL OF INFORMATION
    TAUBE, M
    [J]. LIBRARY TRENDS, 1956, 5 (02) : 301 - 308
  • [22] TOWARDS INFORMATION RETRIEVAL
    LINN, M
    [J]. AMERICAN DOCUMENTATION, 1966, 17 (02): : 109 - &
  • [23] A machine learning information retrieval approach to protein fold recognition
    Cheng, Jianlin
    Baldi, Pierre
    [J]. BIOINFORMATICS, 2006, 22 (12) : 1456 - 1463
  • [24] Information Retrieval and Machine Learning Methods for Academic Expert Finding
    de Campos, Luis M.
    Fernandez-Luna, Juan M.
    Huete, Juan F.
    Ribadas-Pena, Francisco J.
    Bolanos, Nestor
    [J]. ALGORITHMS, 2024, 17 (02)
  • [25] Combining Machine Learning and Information Retrieval Techniques for Software Clustering
    Corazza, Anna
    Di Martino, Sergio
    Maggio, Valerio
    Scanniello, Giuseppe
    [J]. ETERNAL SYSTEMS, 2012, 255 : 42 - +
  • [26] Information leakage in financial machine learning research
    David, Zachary
    [J]. ALGORITHMIC FINANCE, 2019, 8 (1-2) : 1 - 4
  • [27] Evaluating Information-Retrieval Models and Machine-Learning Classifiers for Measuring the Social Perception towards Infectious Diseases
    Apolinardo-Arzube, Oscar
    Antonio Garcia-Diaz, Jose
    Medina-Moreira, Jose
    Luna-Aveiga, Harry
    Valencia-Garcia, Rafael
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (14):
  • [28] Applying Machine Learning Diversity Metrics to Data Fusion in Information Retrieval
    Leonard, David
    Lillis, David
    Zhang, Lusheng
    Toolan, Fergus
    Collier, Rem W.
    Dunnion, John
    [J]. ADVANCES IN INFORMATION RETRIEVAL, 2011, 6611 : 695 - 698
  • [29] Information retrieval using machine learning from breast cancer diagnosis
    Singh, Deepti
    Nigam, Ritu
    Mittal, Ruchi
    Nunia, Manju
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (06) : 8581 - 8602
  • [30] A Literature Review on Machine Learning Based Medical Information Retrieval Systems
    Gudivada, Akhil
    Tabrizi, Nasseh
    [J]. 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 250 - 257