Towards Reproducible Machine Learning Research in Information Retrieval

被引:2
|
作者
Lucic, Ana [1 ]
Bleeker, Maurits [1 ]
de Rijke, Maarten [1 ]
Sinha, Koustuv [2 ]
Jullien, Sami [1 ]
Stojnic, Robert [3 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
[2] McGill Univ, Montreal, PQ, Canada
[3] Facebook AI Res, Menlo Pk, CA USA
关键词
Information retrieval; Reproducibility;
D O I
10.1145/3477495.3532686
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While recent progress in the field of machine learning (ML) and information retrieval (IR) has been significant, the reproducibility of these cutting-edge results is often lacking, with many submissions failing to provide the necessary information in order to ensure subsequent reproducibility [20, 21, 32]. Despite the introduction of self-check mechanisms before submission (such as the Reproducibility Checklist [31]), criteria for evaluating reproducibility during reviewing at several major conferences [4, 11, 28], artifact review and badging framework [18], and dedicated reproducibility tracks and challenges at major IR conferences [8, 14-17], the motivation for executing reproducible research is lacking in the broader information community. We propose this tutorial as a gentle introduction to help ensure reproducible research in IR, with a specific emphasis on ML aspects of IR research.
引用
收藏
页码:3459 / 3461
页数:3
相关论文
共 50 条
  • [11] Special Issue of Machine Learning on Information Retrieval Introduction
    Jaime Carbonell
    Yiming Yang
    William Cohen
    [J]. Machine Learning, 2000, 39 : 99 - 101
  • [12] Automated Machine Learning for Information Retrieval in Scientific Articles
    Rakhshani, Hojjat
    Latard, Bastien
    Brevilliers, Mathieu
    Weber, Jonathan
    Lepagnot, Julien
    Forestier, Germain
    Hassenforder, Michel
    Idoumghar, Lhassane
    [J]. 2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [13] A machine learning model for information retrieval with structured documents
    Piwowarski, B
    Gallinari, P
    [J]. MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, PROCEEDINGS, 2003, 2734 : 425 - 438
  • [14] Applying Machine Learning to Text Segmentation for Information Retrieval
    Xiangji Huang
    Fuchun Peng
    Dale Schuurmans
    Nick Cercone
    Stephen E. Robertson
    [J]. Information Retrieval, 2003, 6 : 333 - 362
  • [15] A Comparative Study of Information Retrieval Using Machine Learning
    Solanki, Surabhi
    Verma, Seema
    Chahar, Kishore
    [J]. ADVANCES IN COMPUTING AND INTELLIGENT SYSTEMS, ICACM 2019, 2020, : 35 - 42
  • [16] Information Retrieval Ranking Using Machine Learning Techniques
    Pandey, Shweta
    Mathur, Iti
    Joshi, Nisheeth
    [J]. PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 86 - 92
  • [17] Special issue of machine learning on information retrieval introduction
    Carbonell, J
    Yang, YM
    Cohen, W
    [J]. MACHINE LEARNING, 2000, 39 (2-3) : 99 - 101
  • [18] Information retrieval and machine learning for probabilistic schema matching
    Nottelmann, Henrik
    Straccia, Umberto
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2007, 43 (03) : 552 - 576
  • [19] Reproducible machine learning research in mental workload classification using EEG
    Demirezen, Guliz
    Temizel, Tugba Taskaya
    Brouwer, Anne-Marie
    [J]. FRONTIERS IN NEUROERGONOMICS, 2024, 5
  • [20] Pyserini: A Python']Python Toolkit for Reproducible Information Retrieval Research with Sparse and Dense Representations
    Lin, Jimmy
    Ma, Xueguang
    Lin, Sheng-Chieh
    Yang, Jheng-Hong
    Pradeep, Ronak
    Nogueira, Rodrigo
    [J]. SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 2356 - 2362