The Stability and Bifurcation in a Ratio-Dependent Predator-Prey Model

被引:0
|
作者
Guo, Shuang [1 ]
Zhang, Ling [1 ]
Zhao, Dongxia [1 ]
机构
[1] Daqing Normal Univ, Sch Math Sci, Daqing 163712, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we analyze the existence of Hopf bifurcation for a ratio-dependent predator-prey models. The result indicates that the coexisting equilibrium (E) over bar (x*, y*, z*) is locally asymptotically stable when tau = 0. The model has a Hopf bifurcation point tau = tau(0) and a stable periodic solution near the equilibrium point E along with the time delay increase. It's consistent with the numerical simulation of dynamic phenomena and the result of theoretical analysis.
引用
收藏
页码:1003 / 1008
页数:6
相关论文
共 50 条
  • [21] Ratio-dependent predator-prey model: effect of environmental fluctuation and stability
    Bandyopadhyay, M
    Chattopadhyay, J
    [J]. NONLINEARITY, 2005, 18 (02) : 913 - 936
  • [22] ANALYSIS OF STABILITY AND PERSISTENCE IN A RATIO-DEPENDENT PREDATOR-PREY RESOURCE MODEL
    Freedman, H. I.
    Agarwal, Manju
    Devi, Sapna
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2009, 2 (01) : 107 - 118
  • [23] Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response
    Arancibia-Ibarra, Claudio
    Aguirre, Pablo
    Flores, Jose
    van Heijster, Peter
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
  • [24] Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting
    Gao, Xiaoyan
    Ishag, Sadia
    Fu, Shengmao
    Li, Wanjun
    Wang, Weiming
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 51
  • [25] Dynamics in a ratio-dependent predator-prey model with predator harvesting
    Xiao, Dongmei
    Li, Wenxia
    Han, Maoan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) : 14 - 29
  • [26] Stability and Global Hopf Bifurcation Analysis on a Ratio-Dependent Predator-Prey Model with Two Time Delays
    Zhao, Huitao
    Lin, Yiping
    Dai, Yunxian
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [27] Pattern selection in a ratio-dependent predator-prey model
    Wang, Weiming
    Lin, Yezhi
    Rao, Feng
    Zhang, Lei
    Tan, Yongji
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [28] A RATIO-DEPENDENT PREDATOR-PREY MODEL WITH DELAY AND HARVESTING
    Misra, A. K.
    Dubey, B.
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2010, 18 (02) : 437 - 453
  • [29] Parametric analysis of the ratio-dependent predator-prey model
    Berezovskaya, F
    Karev, G
    Arditi, R
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 43 (03) : 221 - 246
  • [30] Dynamics and Bifurcations of a Ratio-dependent Predator-prey Model
    Azizi, P.
    Ghaziani, R. Khoshsiar
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40