Umbilic point screening in random optical fields

被引:8
|
作者
Freund, Isaac [1 ]
Egorov, Roman I.
Soskin, Marat S.
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev 28, Ukraine
关键词
D O I
10.1364/OL.32.002182
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Umbilic points-singular points of curvature characterized by a fractional topological charge q = +/- 1/2-are the most numerous of all special points in the landscape of random optical fields (speckle patterns), outnumbering maxima, minima, saddle points, and optical vortices. To the best of our knowledge, we present the first experimental evidence that positive and negative umbilic points screen one another. Theory predicts that in the absence of screening the charge variance in a bounded region is proportional to the area of the region, whereas in the presence of screening the variance is drastically reduced and is proportional to the perimeter. Our data confirm this latter prediction and provide the first estimates of the screening lengths for umbilic points of the intensity and of the amplitude (field modulus). (C) 2007 Optical Society of America.
引用
收藏
页码:2182 / 2184
页数:3
相关论文
共 50 条
  • [41] Errorless Readout of Random Discrete-Point Fields
    Reznik, A. L.
    Efimov, V. M.
    Solov'ev, A. A.
    Torgov, A. V.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2012, 48 (05) : 506 - 514
  • [42] Twisted Spatiotemporal Optical Vortex Random Fields
    Hyde, M. W.
    IEEE PHOTONICS JOURNAL, 2021, 13 (02):
  • [43] Correlations and screening of topological charges in Gaussian random fields
    Dennis, MR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (24): : 6611 - 6628
  • [44] Screening and fluctuation of the topological charge in random wave fields
    De Angels, L.
    Kuipers, L.
    OPTICS LETTERS, 2018, 43 (12) : 2740 - 2743
  • [45] Correlometry of random optical fields and promission methods for diagnostics of random objects
    Angelsky, OV
    Maksimyak, PP
    SARATOV FALL MEETING '98: LIGHT SCATTERING TECHNOLOGIES FOR MECHANICS, BIOMEDICINE, AND MATERIAL SCIENCE, 1999, 3726 : 462 - 483
  • [46] Fast Geometric Point Labeling using Conditional Random Fields
    Rusu, Radu Bogdan
    Holzbach, Andreas
    Blodow, Nico
    Beetz, Michael
    2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 7 - 12
  • [47] Intensity critical point correlation functions in random wave fields
    Freund, I
    OPTICS COMMUNICATIONS, 1996, 128 (4-6) : 315 - 324
  • [49] Dirichlet forms and diffusion processes for fermion random point fields
    Yoo, HJ
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 219 (01) : 143 - 160
  • [50] Classification of Remote Sensing Images Based on their Random Point Fields
    Kosarevych, Rostyslav
    Lutsyk, Oleksij
    Rusyn, Bohdan
    2018 IEEE 13TH INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), VOL 1, 2018, : 416 - 419