Umbilic point screening in random optical fields

被引:8
|
作者
Freund, Isaac [1 ]
Egorov, Roman I.
Soskin, Marat S.
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev 28, Ukraine
关键词
D O I
10.1364/OL.32.002182
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Umbilic points-singular points of curvature characterized by a fractional topological charge q = +/- 1/2-are the most numerous of all special points in the landscape of random optical fields (speckle patterns), outnumbering maxima, minima, saddle points, and optical vortices. To the best of our knowledge, we present the first experimental evidence that positive and negative umbilic points screen one another. Theory predicts that in the absence of screening the charge variance in a bounded region is proportional to the area of the region, whereas in the presence of screening the variance is drastically reduced and is proportional to the perimeter. Our data confirm this latter prediction and provide the first estimates of the screening lengths for umbilic points of the intensity and of the amplitude (field modulus). (C) 2007 Optical Society of America.
引用
收藏
页码:2182 / 2184
页数:3
相关论文
共 50 条
  • [31] Rigidity Hierarchy in Random Point Fields: Random Polynomials and Determinantal Processes
    Ghosh, Subhroshekhar
    Krishnapur, Manjunath
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (03) : 1205 - 1234
  • [32] Some remarks on associated random fields, random measures and point processes
    Last, Guenter
    Szekli, Ryszard
    Yogeshwaran, Dhandapani
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2020, 17 (01): : 355 - 374
  • [33] WAVE CURVES WITH THE PRESENCE OF AN UMBILIC POINT AND AN UMBILIC LINE FOR PLANE-WAVES IN ISOTROPIC ELASTIC SOLIDS
    ZHU, GS
    TING, TCT
    WAVE MOTION, 1991, 13 (03) : 277 - 290
  • [34] Singularity screening in generic optical fields
    Freund, Isaac
    Kessler, David A.
    Vasyl'ev, Vasyl
    Soskin, Marat S.
    OPTICS LETTERS, 2015, 40 (20) : 4747 - 4750
  • [35] MOSER NORMAL FORM AT A NON-UMBILIC POINT
    WEBSTER, SM
    MATHEMATISCHE ANNALEN, 1978, 233 (02) : 97 - 102
  • [36] RANDOM-FIELDS BASED ON POINT-PROCESSES
    MATSUMOTO, SS
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1981, 71 (12) : 1642 - 1642
  • [37] Optical correlation diagnostics of random fields and objects
    Chernovtsy Univ., Chernovtsy, Ukraine
    Opt Eng, 4 (973-981):
  • [38] Recognizing Point Clouds using Conditional Random Fields
    Husain, Farzad
    Dellen, Babette
    Torras, Carme
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 4257 - 4262
  • [39] CONDITIONAL RANDOM FIELDS FOR THE CLASSIFICATION OF LIDAR POINT CLOUDS
    Niemeyer, J.
    Mallet, C.
    Rottensteiner, F.
    Soergel, U.
    ISPRS HANNOVER WORKSHOP 2011: HIGH-RESOLUTION EARTH IMAGING FOR GEOSPATIAL INFORMATION, 2011, 39-4 (W19): : 209 - 214
  • [40] Stable random fields, point processes and large deviations
    Fasen, Vicky
    Roy, Parthanil
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (03) : 832 - 856