On the prescribing σ 2 curvature equation on S4

被引:0
|
作者
Chang, Sun-Yung Alice [2 ]
Han, Zheng-Chao [1 ]
Yang, Paul [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
关键词
SCALAR-CURVATURE; CONFORMAL GEOMETRY; S-N; EXISTENCE; HARNACK; METRICS; THEOREM;
D O I
10.1007/s00526-010-0350-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Prescribing sigma(k) curvature equations are fully nonlinear generalizations of the prescribing Gaussian or scalar curvature equations. For a given a positive function K to be prescribed on the 4-dimensional round sphere, we obtain asymptotic profile analysis for potentially blowing up solutions to the sigma(2) curvature equation with the given K; and rule out the possibility of blowing up solutions when K satisfies a non-degeneracy condition. Under the same non-degeneracy condition on K, we also prove uniform a priori estimates for solutions to a family of sigma(2) curvature equations deforming K to a positive constant; and under an additional, natural degree condition on a finite dimensional map associated with K, we prove the existence of a solution to the sigma(2) curvature equation with the given K using a degree argument involving fully nonlinear elliptic operators to the above deformation.
引用
收藏
页码:539 / 565
页数:27
相关论文
共 50 条
  • [31] MINIMAL IMMERSIONS OF 2-SPHERES IN S4
    RUH, EA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 28 (01) : 219 - &
  • [32] HYPERSURFACES IN S4 THAT ARE OF Lk-2-TYPE
    Lucas, Pascual
    Ramirez-Ospina, Hector-Fabian
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (03) : 885 - 902
  • [33] N=2 SUSY gauge theories on S4
    Hosomichi, Kazuo
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (44)
  • [34] SYNTHESIS AND CRYSTAL-STRUCTURES OF (PPH4)2[IN(S4)(S6)CL] AND (PPH4)2[IN(S4)CL3]
    BUBENHEIM, W
    MULLER, U
    [J]. ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1994, 620 (09): : 1607 - 1612
  • [35] Prescribing scalar curvature on S3
    Schneider, Matthias
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (04): : 563 - 587
  • [36] Intuitionistic S4 is decidable
    Girlando, Marianna
    Kuznets, Roman
    Marin, Sonia
    Morales, Marianela
    Strassburger, Lutz
    [J]. 2023 38TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS, 2023,
  • [37] 浅析S4群
    杜坚
    [J]. 河北民族师范学院学报, 1991, (03) : 13 - 16
  • [38] Refutations and proofs in S4
    Skura, T
    [J]. PROOF THEORY OF MODAL LOGIC, 1996, 2 : 45 - 51
  • [39] ON SOME EXTENSIONS OF S4
    SEGERBERG, K
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1970, 35 (02) : 363 - +
  • [40] A RESOLUTION PROVER FOR S4
    BAZYLEV, VY
    [J]. SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1991, 29 (03): : 97 - 101