HYPERSURFACES IN S4 THAT ARE OF Lk-2-TYPE

被引:2
|
作者
Lucas, Pascual [1 ]
Ramirez-Ospina, Hector-Fabian [2 ]
机构
[1] Univ Murcia, Dept Matemat, Campus Espinardo, E-30100 Murcia, Spain
[2] Univ Nacl Colombia, Dept Matemat, Bogota, Colombia
关键词
linearized operator L-k; L-k-finite-type hypersurface; higher order mean curvatures; Newton transformations; ISOPARAMETRIC HYPERSURFACES; 2-TYPE SURFACES; DELTA; SUBMANIFOLDS; EXTENSION;
D O I
10.4134/BKMS.b150401
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we begin the study of L-k-2-type hypersurfaces of a hypersphere S-n (vertical bar 1) subset of R-n vertical bar 2 for k >= 1. Let psi : M-3 -> S-4 be an orientable H-k-hypersurface, which is not an open portion of a hypersphere. Then M-3 is of L-k-2-type if and only if M-3 is a Clifford tori S-1 (r(1)) x S-2 (r(2)), r(1)(2) = r(2)(2) = 1, for appropriate radii, or a tube T-r (V-2) of appropriate constant radius r around the Veronese embedding of the real projective plane RP2(root 3).
引用
收藏
页码:885 / 902
页数:18
相关论文
共 50 条
  • [1] Lk-2-TYPE HYPERSURFACES IN HYPERBOLIC SPACES
    Lucas, Pascual
    Ramirez-Ospina, Hector-Fabian
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 221 - 242
  • [2] Complements of connected hypersurfaces in S4
    Hillman, Jonathan A.
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (02)
  • [3] Classification of Mobius isoparametric hypersurfaces in S4
    Hu, ZJ
    Li, HZ
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2005, 179 : 147 - 162
  • [4] HYPERSURFACES WITH HARMONIC CONFORMAL GAUSS MAP IN S4
    Lin, Limiao
    Li, Tongzhu
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (02): : 305 - 323
  • [5] Closed hypersurfaces of S4 with two constant curvature functions
    de Almeida, Sebastiao C.
    Brito, Fabiano G. B.
    de Sousa, Luiz Amancio M., Jr.
    [J]. RESULTS IN MATHEMATICS, 2007, 50 (1-2) : 17 - 26
  • [6] COMPLETE MINIMAL HYPERSURFACES IN S4(1) WITH CONSTANT SCALAR CURVATURE
    CHENG, QM
    [J]. OSAKA JOURNAL OF MATHEMATICS, 1990, 27 (04) : 885 - 892
  • [7] MINIMAL HYPERSURFACES IN S4 WITH VANISHING GAUSS-KRONECKER CURVATURE
    RAMANATHAN, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1990, 205 (04) : 645 - 658
  • [8] MINIMAL HYPERSURFACES OF S4 WITH CONSTANT GAUSS-KRONECKER CURVATURE
    DEALMEIDA, SC
    BRITO, FGB
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (01) : 99 - 107
  • [9] Complete minimal hypersurfaces in S4 with zero Gauss-Kronecker curvature
    Hasanis, Th.
    Savas-Halilaj, A.
    Vlachos, Th.
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 142 : 125 - 132
  • [10] Holography for N=2*on S4
    Bobev, Nikolay
    Elvang, Henriette
    Freedman, Daniel Z.
    Pufu, Silviu S.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07):