Possibility of Silicon Nanocages as Anode Electrodes in Metal-Ion Batteries: Computational Examination

被引:0
|
作者
Jasim, Saade Abdalkareem [1 ]
Riadi, Yassine [2 ]
Akhmadaliev, Nusrat N. [3 ]
Sharma, Himanshu [4 ]
Lafta, Holya A. [5 ]
Qiao, Jinlian [6 ]
机构
[1] Al Maarif Univ Coll, Med Lab Tech Dept, Al Anbar Ramadi, Iraq
[2] Prince Sattam Bin Abdulaziz Univ, Coll Pharm, Dept Pharmaceut Chem, Al Kharj 11942, Saudi Arabia
[3] Tashkent State Dent Inst, Dept Med & Biol Chem, Tashkent, Uzbekistan
[4] GLA Univ, Dept Comp Engn & Applicat, Mathura, India
[5] Al Nisour Univ Coll, Baghdad, Iraq
[6] XinYang Vocat & Tech Coll, Dept Med Chem, Xinyang 464000, Peoples R China
关键词
Silicon; Nano; Battery; Cell voltage; Electrode; ORGANIC FRAMEWORKS; LITHIUM; COMPOSITE; HYDROGEN;
D O I
10.1007/s12633-022-01761-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Potential of silicon nanocages (Si-n, n = 20, 24, 28, 32, 36, 40, 44, 48, 60, 70, 80 and 90) as anodes in batteries are examined. The thermal stability, ionization potentials, electron affinities, bond gap energies of Si-n structures are investigated. Results shown when the numbers of Si atoms of nanocages are increased the IP, E-Gap and EA of Si-n are decreased. The cell voltage and capacities of 12 silicon structures are investigated. The V-cell and C-Theory of Si-n in batteries in four sides of nanocage positions are higher than inner and outer positions. The V-cell of Si-n structures in Li-ion batteries are 1.82-2.20 V and the C-Theory of Si-n structures in Li-IBs are 653.0-799.2 mAh/g. The V-cell and C-Theory of Si-n structures in this study are higher than V-cell and C-Theory of graphite compounds, carbon nano structures and boron nitride nanotubes.
引用
收藏
页码:10225 / 10235
页数:11
相关论文
共 50 条
  • [31] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Li, Tao
    Yang, Juan-Yu
    Lu, Shi-Gang
    Wang, Han
    Ding, Hai-Yang
    [J]. RARE METALS, 2013, 32 (03) : 299 - 304
  • [32] Two-Dimensional Anode Materials for Non-lithium Metal-Ion Batteries
    Mukherjee, Santanu
    Singh, Gurpreet
    [J]. ACS APPLIED ENERGY MATERIALS, 2019, 2 (02): : 932 - 955
  • [33] Assessing the Suitability of a-SiS Nanosheet as an Anode Material for Multivalent Metal-Ion Batteries
    Shaikh, Gaushiya A.
    Cornil, David
    Dar, Manzoor Ahmad
    Gupta, Sanjeev K.
    Ahuja, Rajeev
    Gajjar, P. N.
    [J]. ENERGY & FUELS, 2023, 37 (19) : 15116 - 15126
  • [34] Pyrazinoquinoxaline graphdiyne: A novel high-capacity anode material for metal-ion batteries
    Keshtkari, Leila
    Rabczuk, Timon
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2024, 161
  • [35] Ca2C MXene monolayer as a superior anode for metal-ion batteries
    Rajput, Kaptan
    Kumar, Vipin
    Thomas, Siby
    Zaeem, Mohsen Asle
    Roy, Debesh Ranjan
    [J]. 2D MATERIALS, 2021, 8 (03)
  • [36] MnSb2S4 Monolayer as an Anode Material for Metal-Ion Batteries
    Zhang, Zizhong
    Zhang, Yongfan
    Li, Yi
    Lin, Jing
    Truhlar, Donald G.
    Huang, Shuping
    [J]. CHEMISTRY OF MATERIALS, 2018, 30 (10) : 3208 - 3214
  • [37] Polymer electrolytes for metal-ion batteries
    Voropaeva, Daria Yu
    Novikova, Svetlana A.
    Yaroslavtsev, Andrey B.
    [J]. RUSSIAN CHEMICAL REVIEWS, 2020, 89 (10) : 1132 - 1155
  • [38] Brewers' Spent Grains-Derived Carbon as Anode for Alkali Metal-Ion Batteries
    Magar, Sandesh Darlami
    Leibing, Christian
    Gomez-Urbano, Juan Luis
    Carriazo, Daniel
    Balducci, Andrea
    [J]. ENERGY TECHNOLOGY, 2022, 10 (09)
  • [39] Designed metal-organic framework composites for metal-ion batteries and metal-ion capacitors
    Tatrari, Gaurav
    An, Rong
    Shah, Faiz Ullah
    [J]. COORDINATION CHEMISTRY REVIEWS, 2024, 512
  • [40] α-VPO4: A Novel Many Monovalent Ion Intercalation Anode Material for Metal-Ion Batteries
    Fedotov, Stanislav S.
    Samarin, Aleksandr Sh.
    Nikitina, Victoria A.
    Stevenson, Keith J.
    Abakumov, Artem M.
    Antipov, Evgeny V.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (13) : 12431 - 12440