The Robinson-Schensted-Knuth correspondence and the bijections of commutativity and associativity

被引:2
|
作者
Danilov, V. I. [1 ]
Koshevoi, G. A. [1 ]
机构
[1] Russian Acad Sci, Cent Inst Econ & Math, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1070/IM2008v072n04ABEH002415
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bijections of associativity and commutativity arise from symmetries of the Littlewood-Richardson coefficients. We define these bijections in terms of arrays and show that they coincide with analogous bijections defined in terms of discretely concave functions using the octahedron recurrence as well as with bijections defined in terms of Young tableaux. The main ingredient in the proof of their coincidence is a functional version of the Robinson-Schensted-Knuth correspondence.
引用
收藏
页码:689 / 716
页数:28
相关论文
共 50 条
  • [31] Gelfand models and Robinson-Schensted correspondence
    Caselli, Fabrizio
    Fulci, Roberta
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (02) : 175 - 207
  • [32] Mirabolic Robinson-Shensted-Knuth correspondence
    Travkin, Roman
    SELECTA MATHEMATICA-NEW SERIES, 2009, 14 (3-4): : 727 - 758
  • [33] Permutation Sign under the Robinson-Schensted Correspondence
    Astrid Reifegerste
    Annals of Combinatorics, 2004, 8 (1) : 103 - 112
  • [34] Poisson limit of bumping routes in the Robinson–Schensted correspondence
    Mikołaj Marciniak
    Łukasz Maślanka
    Piotr Śniady
    Probability Theory and Related Fields, 2021, 181 : 1053 - 1103
  • [35] Robinson-Schensted correspondence for unit interval orders
    Kim, Dongkwan
    Pylyavskyy, Pavlo
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (05):
  • [36] ROBINSON-SCHENSTED CORRESPONDENCE FOR SKEWED OSCILLATING TABLEAUX
    DULUCQ, S
    SAGAN, BE
    DISCRETE MATHEMATICS, 1995, 139 (1-3) : 129 - 142
  • [37] Robinson-Schensted correspondence for the signed Brauer algebras
    Parvathi, M.
    Tamilselvi, A.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [38] The role of Robinson-Schensted and Kerov-Kirillov-Reshetikhin bijections in Bethe Ansatz
    Jakubczyk, D.
    Lulek, T.
    Jakubczyk, P.
    Lulek, B.
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2008, 104
  • [39] A ROBINSON-SCHENSTED-TYPE CORRESPONDENCE FOR A DUAL PAIR ON SPINORS
    TERADA, I
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 63 (01) : 90 - 109
  • [40] Matrix-Ball Construction of affine Robinson–Schensted correspondence
    Michael Chmutov
    Pavlo Pylyavskyy
    Elena Yudovina
    Selecta Mathematica, 2018, 24 : 667 - 750