The Robinson-Schensted-Knuth correspondence and the bijections of commutativity and associativity

被引:2
|
作者
Danilov, V. I. [1 ]
Koshevoi, G. A. [1 ]
机构
[1] Russian Acad Sci, Cent Inst Econ & Math, Moscow 117901, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1070/IM2008v072n04ABEH002415
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bijections of associativity and commutativity arise from symmetries of the Littlewood-Richardson coefficients. We define these bijections in terms of arrays and show that they coincide with analogous bijections defined in terms of discretely concave functions using the octahedron recurrence as well as with bijections defined in terms of Young tableaux. The main ingredient in the proof of their coincidence is a functional version of the Robinson-Schensted-Knuth correspondence.
引用
收藏
页码:689 / 716
页数:28
相关论文
共 50 条
  • [21] ROBINSON-SCHENSTED-KNUTH ALGORITHM, JEU DE TAQUIN, AND KEROV-VERSHIK MEASURES ON INFINITE TABLEAUX
    Sniady, Piotr
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (02) : 598 - 630
  • [22] Properties of the nonsymmetric Robinson–Schensted–Knuth algorithm
    James Haglund
    Sarah Mason
    Jeffrey Remmel
    Journal of Algebraic Combinatorics, 2013, 38 : 285 - 327
  • [23] AN OCCURRENCE OF THE ROBINSON-SCHENSTED CORRESPONDENCE
    STEINBERG, R
    JOURNAL OF ALGEBRA, 1988, 113 (02) : 523 - 528
  • [24] Gelfand models and Robinson–Schensted correspondence
    Fabrizio Caselli
    Roberta Fulci
    Journal of Algebraic Combinatorics, 2012, 36 : 175 - 207
  • [25] The exotic Robinson-Schensted correspondence
    Henderson, Anthony
    Trapa, Peter E.
    JOURNAL OF ALGEBRA, 2012, 370 : 32 - 45
  • [26] A q-Robinson-Schensted-Knuth algorithm and a q-polymer
    Pei, Yuchen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04):
  • [27] Mirabolic Robinson–Shensted–Knuth correspondence
    Roman Travkin
    Selecta Mathematica, 2009, 14 : 727 - 758
  • [28] THE ROBINSON-SCHENSTED CORRESPONDENCE FOR FOURFOLD ALGEBRA
    BONETTI, F
    SENATO, D
    VENEZIA, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1988, 2B (03): : 541 - 554
  • [29] Robinson–Schensted correspondence for unit interval orders
    Dongkwan Kim
    Pavlo Pylyavskyy
    Selecta Mathematica, 2021, 27
  • [30] Robinson-Schensted correspondence and left cells
    Ariki, S
    COMBINATORIAL METHODS IN REPRESENTATION THEORY, 2000, 28 : 1 - 20