Optimal estimation with quantum optomechanical systems in the nonlinear regime

被引:24
|
作者
Schneiter, Fabienne [1 ]
Qvarfort, Sofia [2 ]
Serafini, Alessio [2 ]
Xuereb, Andre [3 ]
Braun, Daniel [1 ]
Raetzel, Dennis [4 ]
Bruschi, David Edward [5 ,6 ,7 ]
机构
[1] Eberhard Karls Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
[2] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[3] Univ Malta, Dept Phys, MSD-2080 Msida, Malta
[4] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[5] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[6] Inst Quantum Opt & Quantum Informat IQOQI Vienna, Boltzmanngasse 3, A-1090 Vienna, Austria
[7] Univ Saarland, Theoret Phys, D-66123 Saarbrucken, Germany
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
FISHER INFORMATION;
D O I
10.1103/PhysRevA.101.033834
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the fundamental bounds on precision measurements of parameters contained in a time-dependent nonlinear optomechanical Hamiltonian, which includes the nonlinear light-matter coupling, a mechanical displacement term, and a single-mode mechanical squeezing term. By using a recently developed method to solve the dynamics of this system, we derive a general expression for the quantum Fisher information and demonstrate its applicability through three concrete examples: estimation of the strength of a nonlinear light-matter coupling, the strength of a time-modulated mechanical displacement, and a single-mode mechanical squeezing parameter, all of which are modulated at resonance. Our results can be used to compute the sensitivity of a nonlinear optomechanical system to a number of external and internal effects, such as forces acting on the system or modulations of the light-matter coupling.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Quantum nonlinear dynamics of optomechanical systems in the strong-coupling regime
    Machado, J. D. P.
    Blanter, Ya. M.
    [J]. PHYSICAL REVIEW A, 2016, 94 (06)
  • [2] Simulation of an optomechanical quantum memory in the nonlinear regime
    Teh, R. Y.
    Kiesewetter, S.
    Reid, M. D.
    Drummond, P. D.
    [J]. PHYSICAL REVIEW A, 2017, 96 (01)
  • [3] Optimal estimation of time-dependent gravitational fields with quantum optomechanical systems
    Qvarfort, Sofia
    Plato, A. Douglas K.
    Bruschi, David Edward
    Schneiter, Fabienne
    Braun, Daniel
    Serafini, Alessio
    Raetzel, Dennis
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [4] Optimal quantum parameter estimation in a pulsed quantum optomechanical system
    Zheng, Qiang
    Yao, Yao
    Li, Yong
    [J]. PHYSICAL REVIEW A, 2016, 93 (01)
  • [5] Optimal State Estimation for Cavity Optomechanical Systems
    Wieczorek, Witlef
    Hofer, Sebastian G.
    Hoelscher-Obermaier, Jason
    Riedinger, Ralf
    Hammerer, Klemens
    Aspelmeyer, Markus
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (22)
  • [6] Nonlinear Dynamics and Quantum Entanglement in Optomechanical Systems
    Wang, Guanglei
    Huang, Liang
    Lai, Ying-Cheng
    Grebogi, Celso
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (11)
  • [7] Optomechanical multistability in the quantum regime
    Schulz, C.
    Alvermann, A.
    Bakemeier, L.
    Fehske, H.
    [J]. EPL, 2016, 113 (06)
  • [8] The optomechanical instability in the quantum regime
    Ludwig, Max
    Kubala, Bjoern
    Marquardt, Florian
    [J]. NEW JOURNAL OF PHYSICS, 2008, 10
  • [9] Multimode optomechanical system in the quantum regime
    Nielsen, William Hvidtfelt Padkaer
    Tsaturyan, Yeghishe
    Moller, Christoffer Bo
    Polzik, Eugene S.
    Schliesser, Albert
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (01) : 62 - 66
  • [10] Mechanical oscillator thermometry in the nonlinear optomechanical regime
    Montenegro, V
    Genoni, M. G.
    Bayat, A.
    Paris, M. G. A.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (04):