Optimal estimation of time-dependent gravitational fields with quantum optomechanical systems

被引:16
|
作者
Qvarfort, Sofia [1 ,2 ]
Plato, A. Douglas K. [3 ,4 ]
Bruschi, David Edward [5 ]
Schneiter, Fabienne [6 ]
Braun, Daniel [6 ]
Serafini, Alessio [2 ]
Raetzel, Dennis [4 ]
机构
[1] Imperial Coll, QOLS, Blackett Lab, London SW7 2AZ, England
[2] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[3] Univ Rostock, Inst Phys, Albert Einstein Str 23, D-18059 Rostock, Germany
[4] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[5] Eberhard Karls Univ Tubingen, Inst Theoret Phys, D-66123 Saarbrucken, Germany
[6] Eberhard Karls Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
SQUEEZED STATES; RADIATION-PRESSURE; SIDE-BAND; 1550; NM; LIGHT;
D O I
10.1103/PhysRevResearch.3.013159
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the fundamental sensitivity that can be achieved with an ideal optomechanical system in the nonlinear regime for measurements of time-dependent gravitational fields. Using recently developed methods to solve the dynamics of a nonlinear optomechanical system with a time-dependent Hamiltonian, we compute the quantum Fisher information for linear displacements of the mechanical element due to gravity. We demonstrate that the sensitivity cannot only be further enhanced by injecting squeezed states of the cavity field, but also by modulating the light-matter coupling of the optomechanical system. We specifically apply our results to the measurement of gravitational fields from small oscillating masses, where we show that, in principle, the gravitational field of an oscillating nanogram mass can be detected based on experimental parameters that will likely be accessible in the near-term future. Finally, we identify the experimental parameter regime necessary for gravitational wave detection with a quantum optomechanical sensor.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Optimal estimation with quantum optomechanical systems in the nonlinear regime
    Schneiter, Fabienne
    Qvarfort, Sofia
    Serafini, Alessio
    Xuereb, Andre
    Braun, Daniel
    Raetzel, Dennis
    Bruschi, David Edward
    [J]. PHYSICAL REVIEW A, 2020, 101 (03)
  • [2] CREATION OF PARTICLES BY TIME-DEPENDENT GRAVITATIONAL-FIELDS
    CASTAGNINO, M
    WEDER, R
    [J]. PHYSICS LETTERS B, 1979, 89 (01) : 160 - 164
  • [3] Quantum estimation of a time-dependent perturbation
    Madsen, Claus Normann
    Valdetaro, Lia
    Molmer, Klaus
    [J]. PHYSICAL REVIEW A, 2021, 104 (05)
  • [4] Quantum response to time-dependent external fields
    Miyashita, Seiji
    Tanaka, Shu
    De Raedt, Hans
    Barbara, Bernard
    [J]. INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2008 (IW-SMI 2008), 2009, 143
  • [5] Optimal control for multi-parameter quantum estimation with time-dependent Hamiltonians
    Xie, Dong
    Xu, Chunling
    [J]. RESULTS IN PHYSICS, 2019, 15
  • [6] Quantum systems with time-dependent boundaries
    Di Martino, Sara
    Facchi, Paolo
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (06)
  • [7] APPROXIMATION FOR TIME-DEPENDENT QUANTUM SYSTEMS
    HAMMANN, TF
    FELLAH, M
    [J]. JOURNAL DE PHYSIQUE LETTRES, 1978, 39 (11): : L155 - L157
  • [8] Quantum Dynamics Under Time-Dependent External Fields
    Miyashita, Seiji
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2011, 8 (06) : 919 - 936
  • [10] Particle production in time-dependent gravitational fields: the expanding mass shell
    Hossenfelder, S
    Schwarz, DJ
    Greiner, W
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (11) : 2337 - 2353