Optimal estimation with quantum optomechanical systems in the nonlinear regime

被引:24
|
作者
Schneiter, Fabienne [1 ]
Qvarfort, Sofia [2 ]
Serafini, Alessio [2 ]
Xuereb, Andre [3 ]
Braun, Daniel [1 ]
Raetzel, Dennis [4 ]
Bruschi, David Edward [5 ,6 ,7 ]
机构
[1] Eberhard Karls Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
[2] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[3] Univ Malta, Dept Phys, MSD-2080 Msida, Malta
[4] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[5] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[6] Inst Quantum Opt & Quantum Informat IQOQI Vienna, Boltzmanngasse 3, A-1090 Vienna, Austria
[7] Univ Saarland, Theoret Phys, D-66123 Saarbrucken, Germany
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
FISHER INFORMATION;
D O I
10.1103/PhysRevA.101.033834
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the fundamental bounds on precision measurements of parameters contained in a time-dependent nonlinear optomechanical Hamiltonian, which includes the nonlinear light-matter coupling, a mechanical displacement term, and a single-mode mechanical squeezing term. By using a recently developed method to solve the dynamics of this system, we derive a general expression for the quantum Fisher information and demonstrate its applicability through three concrete examples: estimation of the strength of a nonlinear light-matter coupling, the strength of a time-modulated mechanical displacement, and a single-mode mechanical squeezing parameter, all of which are modulated at resonance. Our results can be used to compute the sensitivity of a nonlinear optomechanical system to a number of external and internal effects, such as forces acting on the system or modulations of the light-matter coupling.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Optimal state estimation of controllable quantum dynamical systems
    Chakrabarti, Raj
    Ghosh, Anisha
    [J]. PHYSICAL REVIEW A, 2012, 85 (03):
  • [42] Optimal estimation of gravitation with Kerr nonlinearity in an optomechanical system
    Xiao, Xiao
    Liang, Hongbin
    Wang, Xiaoguang
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (11)
  • [43] Optimal estimation of gravitation with Kerr nonlinearity in an optomechanical system
    Xiao Xiao
    Hongbin Liang
    Xiaoguang Wang
    [J]. Quantum Information Processing, 2020, 19
  • [44] Optimal limits of cavity optomechanical cooling in the strong-coupling regime
    Liu, Yong-Chun
    Shen, Yu-Feng
    Gong, Qihuang
    Xiao, Yun-Feng
    [J]. PHYSICAL REVIEW A, 2014, 89 (05):
  • [45] Optimal optomechanical coupling strength in multimembrane systems
    Newsom, David C.
    Luna, Fernando
    Fedoseev, Vitaly
    Loffler, Wolfgang
    Bouwmeester, Dirk
    [J]. PHYSICAL REVIEW A, 2020, 101 (03)
  • [46] Quantum nonlinear effect in a dissipatively coupled optomechanical system
    Yang, Wen-Quan
    Niu, Wei
    Ma, Yong-Hong
    Zhang, Wen-Zhao
    [J]. OPTICS EXPRESS, 2024, 32 (07): : 11801 - 11817
  • [47] Cooling and thermophonon transports in nonlinear optomechanical systems
    Wu, Yu
    Liao, Qinghong
    Chen, Aixi
    Nie, Wenjie
    [J]. RESULTS IN PHYSICS, 2021, 31
  • [48] Interactive optomechanical coupling with nonlinear polaritonic systems
    Bobrovska, N.
    Matuszewski, M.
    Liew, T. C. H.
    Kyriienko, O.
    [J]. PHYSICAL REVIEW B, 2017, 95 (08)
  • [49] Nonlinear dynamics of weakly dissipative optomechanical systems
    Roque, Thales Figueiredo
    Marquardt, Florian
    Yevtushenko, Oleg M.
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (01)
  • [50] Optomechanical probe of an axial-vector mediated interaction in the quantum regime
    Chen, Lei
    Liu, Jian
    Zhu, Ka Di
    [J]. OPTICS EXPRESS, 2020, 28 (11) : 15863 - 15873