AN ADJOINT-BASED A POSTERIORI ANALYSIS OF NUMERICAL APPROXIMATION OF RICHARDS EQUATION

被引:0
|
作者
Ginting, Victor [1 ]
机构
[1] Univ Wyoming, Dept Math & Stat, Laramie, WY 82071 USA
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 05期
关键词
  Richards equation; space-time finite element; finite volume element; a posteriori error estimation; adjoint methods; TIME DISCRETIZATION; FLOW; PDES;
D O I
10.3934/era.2021045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper formulates a general framework for a space-time finite element method for solving Richards Equation in one spatial dimension, where the spatial variable is discretized using the linear finite volume element and the temporal variable is discretized using a discontinuous Galerkin method. The actual implementation of a particular scheme is realized by imposing certain finite element space in temporal variable to the variational equation and appro-priate "variational crime" in the form of numerical integrations for calculating integrations in the formulation. Once this is in place, adjoint-based error esti-mators for the approximate solution from the scheme is derived. The adjoint problem is obtained from an appropriate linearization of the nonlinear system. Numerical examples are presented to illustrate performance of the methods and the error estimators.
引用
收藏
页码:3405 / 3427
页数:23
相关论文
共 50 条
  • [1] APPROACHES FOR ADJOINT-BASED A POSTERIORI ANALYSIS OF STABILIZED FINITE ELEMENT METHODS
    Cyr, Eric C.
    Shadid, John
    Wildey, Tim
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02): : A766 - A791
  • [2] An adjoint-based a posteriori estimation of iterative convergence error
    Alekseev, A. K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (8-9) : 1205 - 1212
  • [3] Adjoint-based sensitivity analysis for a numerical storm surge model
    Warder, Simon C.
    Horsburgh, Kevin J.
    Piggott, Matthew D.
    OCEAN MODELLING, 2021, 160
  • [4] Adjoint-based Analysis of Thermoacoustic Coupling
    Lemke, Mathias
    Reiss, Julius
    Sesterhenn, Joern
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2163 - 2166
  • [5] Adjoint-based sensitivity analysis of flames
    Braman, Kalen
    Oliver, Todd A.
    Raman, Venkat
    COMBUSTION THEORY AND MODELLING, 2015, 19 (01) : 29 - 56
  • [6] ADJOINT-BASED A POSTERIORI ERROR ESTIMATION FOR COUPLED TIME-DEPENDENT SYSTEMS
    Asner, Liya
    Tavener, Simon
    Kay, David
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2394 - A2419
  • [7] An adjoint-based super-convergent Galerkin approximation of eigenvalues
    Cockburn, Bernardo
    Xia, Shiqiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449
  • [8] A POSTERIORI ERROR ESTIMATES FOR THE RICHARDS EQUATION
    Mitra, K.
    Vohralik, M.
    MATHEMATICS OF COMPUTATION, 2024, 93 (347) : 1053 - 1096
  • [9] AN ADJOINT-BASED METHOD FOR THE NUMERICAL APPROXIMATION OF SHAPE OPTIMIZATION PROBLEMS IN PRESENCE OF FLUID-STRUCTURE INTERACTION
    Manzoni, Andrea
    Ponti, Luca
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (04): : 1501 - 1532
  • [10] Adjoint-Based Boundary Condition Sensitivity Analysis
    Zhang, Zhen
    Mao, Yinbo
    Su, Xinrong
    Yuan, Xin
    AIAA JOURNAL, 2022, 60 (06) : 3517 - 3527