AN ADJOINT-BASED A POSTERIORI ANALYSIS OF NUMERICAL APPROXIMATION OF RICHARDS EQUATION

被引:0
|
作者
Ginting, Victor [1 ]
机构
[1] Univ Wyoming, Dept Math & Stat, Laramie, WY 82071 USA
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 05期
关键词
  Richards equation; space-time finite element; finite volume element; a posteriori error estimation; adjoint methods; TIME DISCRETIZATION; FLOW; PDES;
D O I
10.3934/era.2021045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper formulates a general framework for a space-time finite element method for solving Richards Equation in one spatial dimension, where the spatial variable is discretized using the linear finite volume element and the temporal variable is discretized using a discontinuous Galerkin method. The actual implementation of a particular scheme is realized by imposing certain finite element space in temporal variable to the variational equation and appro-priate "variational crime" in the form of numerical integrations for calculating integrations in the formulation. Once this is in place, adjoint-based error esti-mators for the approximate solution from the scheme is derived. The adjoint problem is obtained from an appropriate linearization of the nonlinear system. Numerical examples are presented to illustrate performance of the methods and the error estimators.
引用
收藏
页码:3405 / 3427
页数:23
相关论文
共 50 条
  • [31] Adjoint-based sensitivity analysis of char combustion surface reaction kinetics
    Hassan, Ahmed
    Sayadi, Taraneh
    Schiemann, Martin
    Scherer, Viktor
    FUEL, 2021, 287
  • [32] ADJOINT BASED A POSTERIORI ANALYSIS OF MULTISCALE MORTAR DISCRETIZATIONS WITH MULTINUMERICS
    Tavener, Simon
    Wildey, Tim
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06): : A2621 - A2642
  • [33] Evolution of analysis error and adjoint-based sensitivities: Implications for adaptive observations
    Kim, HM
    Morgan, MC
    Morss, RE
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2004, 61 (07) : 795 - 812
  • [34] Adjoint-based parametric sensitivity analysis for swirling M-flames
    Skene, Calum S.
    Schmid, Peter J.
    JOURNAL OF FLUID MECHANICS, 2019, 859 : 516 - 542
  • [35] Adjoint-based estimation and control of spatial, temporal and stochastic approximation errors in unsteady flow simulations
    Lakshminarayan, Vinod K.
    Duraisamy, Karthik
    COMPUTERS & FLUIDS, 2015, 121 : 180 - 191
  • [36] Adjoint-based sensitivity analysis of viscoelastic fluids at a low deborah number
    Kim, Jaekwang
    APPLIED MATHEMATICAL MODELLING, 2023, 115 : 453 - 469
  • [37] ADJOINT-BASED FLOW SENSITIVITY ANALYSIS USING ARBITRARY CONTROL SURFACES
    Frey, Christian
    Ashcroft, Graham
    Backhaus, Jan
    Kuegeler, Edmund
    Wellner, Jens
    PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 7, PTS A-C, 2012, : 1067 - 1076
  • [38] Evolution of analysis error and adjoint-based optimal perturbation in a quasigeostrophic model
    Kim, HM
    Morgan, MC
    14TH CONFERENCE ON ATMOSPHERIC AND OCEANIC FLUID DYNAMICS, 2003, : 185 - 190
  • [39] A MATLAB Toolbox for Adjoint-Based Sensitivity Analysis of Switched Reluctance Motors
    Sayed, Ehab
    Bakr, Mohamed H.
    Bilgin, Berker
    Emadi, Ali
    2018 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2018,
  • [40] Adjoint-Based Methodology for Anisotropic Grid Adaptation
    Yamaleev, Nail K.
    Diskin, Boris
    Pathak, Kedar
    COMPUTATIONAL FLUID DYNAMICS 2010, 2011, : 571 - +