An adjoint-based a posteriori estimation of iterative convergence error

被引:2
|
作者
Alekseev, A. K. [1 ]
机构
[1] RSC, ENERGIA, Dept Aerodynam & Heat Transfer, Korolev 141070, Moscow Region, Russia
关键词
time iteration; convergence error; a posteriori estimation; adjoint equations;
D O I
10.1016/j.camwa.2006.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The iterative convergence error of goal functional is considered for solving the steady problem by time iterations. The functional error is calculated using adjoint parameter and time derivative. The numerical tests demonstrate the applicability of this approach for linear and nonlinear heat conduction equations. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1205 / 1212
页数:8
相关论文
共 50 条
  • [1] ADJOINT-BASED A POSTERIORI ERROR ESTIMATION FOR COUPLED TIME-DEPENDENT SYSTEMS
    Asner, Liya
    Tavener, Simon
    Kay, David
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2394 - A2419
  • [2] Adjoint-Based Error Estimation and Mesh Refinement in an Adjoint-Based Airfoil Shape Optimization of a Transonic Benchmark Problem
    Li, Ding
    Hartmann, Ralf
    [J]. NEW RESULTS IN NUMERICAL AND EXPERIMENTAL FLUID MECHANICS X, 2016, 132 : 537 - 546
  • [3] An automated approach for parallel adjoint-based error estimation and mesh adaptation
    Granzow, Brian N.
    Oberai, Assad A.
    Shephard, Mark S.
    [J]. ENGINEERING WITH COMPUTERS, 2020, 36 (03) : 1169 - 1188
  • [4] An automated approach for parallel adjoint-based error estimation and mesh adaptation
    Brian N. Granzow
    Assad A. Oberai
    Mark S. Shephard
    [J]. Engineering with Computers, 2020, 36 : 1169 - 1188
  • [5] Adjoint-based error estimation for grid adaptation for large eddy simulation
    Jiang, Yao
    Nadarajah, Siva
    [J]. COMPUTERS & FLUIDS, 2022, 236
  • [6] Approximate adjoint-based iterative learning control
    Nygren, Johannes
    Pelckmans, Kristiaan
    Carlsson, Bengt
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (05) : 1028 - 1046
  • [7] AN ADJOINT-BASED A POSTERIORI ANALYSIS OF NUMERICAL APPROXIMATION OF RICHARDS EQUATION
    Ginting, Victor
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (05): : 3405 - 3427
  • [8] Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods
    Woopen, M.
    May, G.
    Schuetz, J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 76 (11) : 811 - 834
  • [9] SuperAdjoint: Super-resolution neural networks in adjoint-based error estimation
    Hunter, Thomas P.
    Hulshoff, Steven J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [10] Adjoint-based error estimation and mesh adaptation for stabilized finite deformation elasticity
    Granzow, Brian N.
    Oberai, Assad A.
    Shephard, Mark S.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 337 : 263 - 280