Glyoxylic acetals as electrolytes for Si/Graphite anodes in lithium-ion batteries

被引:13
|
作者
Gehrlein, Lydia [1 ]
Leibing, Christian [2 ,3 ]
Pfeifer, Kristina [1 ]
Jeschull, Fabian [1 ]
Balducci, Andrea [2 ,3 ]
Maibach, Julia [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Appl Mat Energy Storage Syst IAM ESS, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, Philosophenweg 7a, D-07743 Jena, Germany
[3] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, Philosophenweg 7a, D-07743 Jena, Germany
关键词
SILICON-GRAPHITE ELECTRODES; FLUOROETHYLENE CARBONATE FEC; IN-SITU; LI; INTERPHASE; PERFORMANCE; STATE; MECHANISMS; SOLVENTS; GLYOXAL;
D O I
10.1016/j.electacta.2022.140642
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Using silicon-containing anodes in lithium-ion batteries is mainly impeded by undesired side reactions at the electrode/electrolyte interface leading to the gradual loss of active lithium. Therefore, electrolyte formulations are needed, which form a solid electrolyte interphase (SEI) that can accommodate to the volume changes of the silicon particles. In this work, we analyze the influence of two glyoxylic acetals on the cycling stability of silicon-containing graphite anodes, namely TMG (1 M LiTFSI in 1,1,2,2-tetramethoxyethane) and TEG (1 M LiTFSI in 1,1,2,2-tetraethoxyethane). The choice of these two electrolyte formulations was motivated by their positive impact on the thermal stability of LIBs. We investigate solid electrolyte decomposition products employing x-ray photoelectron spectroscopy (XPS). The cycling stability of Si/Gr anodes in each electrolyte is correlated to changes in SEI thickness, composition, and morphology upon formation and aging. This evaluation is completed by comparing the performance of TMG and TEG to two carbonate-based reference electrolytes (1 M LiTFSI in 1:1 ethylene carbonate: dimethyl carbonate and 1 M LiPF6 in the same solvent mixture). Cells cycled in TMG display inferior electrochemical performance to the two reference electrolytes. By contrast, cells cycled in TEG exhibit the best capacity retention with overall higher capacities. We can correlate this to better film-forming properties of the TEG solvent as it forms a smoother and more interconnected SEI, which can better adapt to the volume changes of the silicon. Therefore, TEG appears to be a promising electrolyte solvent for silicon-containing anodes.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Dynamic processes in Si and Si/C anodes in lithium-ion batteries during cycling
    Hu, Zheng-Guang
    Tan, Zhi-Yuan
    Lin, Zhong
    Chen, Jun
    Sun, Fang
    Tang, Xuyao
    Zheng, Rui-Ting
    Chen, Yong-Chong
    Cheng, Guo-An
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 839 : 187 - 194
  • [42] Functional binders as graphite exfoliation suppressants in aggressive electrolytes for lithium-ion batteries
    Jeschull, Fabian
    Lacey, Matthew J.
    Brandell, Daniel
    ELECTROCHIMICA ACTA, 2015, 175 : 141 - 150
  • [43] A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries
    Liu, Jie
    Zhang, Qian
    Zhang, Tao
    Li, Jun-Tao
    Huang, Ling
    Sun, Shi-Gang
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (23) : 3599 - 3605
  • [44] Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries
    Smart, MC
    Ratnakumar, BV
    Surampudi, S
    Wang, Y
    Zhang, X
    Greenbaum, SG
    Hightower, A
    Ahn, CC
    Fultz, B
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (11) : 3963 - 3969
  • [45] Co-intercalation-free ether electrolytes for graphitic anodes in lithium-ion batteries
    Ma, Peiyuan
    Mirmira, Priyadarshini
    Eng, Peter J.
    Son, Seoung-Bum
    Bloom, Ira D.
    Filatov, Alexander S.
    Amanchukwu, Chibueze, V
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (11) : 4823 - 4835
  • [46] High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes
    Ai-Min Li
    Zeyi Wang
    Travis P. Pollard
    Weiran Zhang
    Sha Tan
    Tianyu Li
    Chamithri Jayawardana
    Sz-Chian Liou
    Jiancun Rao
    Brett L. Lucht
    Enyuan Hu
    Xiao-Qing Yang
    Oleg Borodin
    Chunsheng Wang
    Nature Communications, 15
  • [47] Elemental Foil Anodes for Lithium-Ion Batteries
    Heligman, Brian T.
    Manthiram, Arumugam
    ACS ENERGY LETTERS, 2021, 6 (08) : 2666 - 2672
  • [48] Overview of carbon anodes for lithium-ion batteries
    Zaghib, K
    Kinoshita, K
    NEW TRENDS IN INTERCALATION COMPOUNDS FOR ENERGY STORAGE, 2002, 61 : 27 - 38
  • [49] Microstructured silicon anodes for lithium-ion batteries
    Li, G. V.
    Astrova, E. V.
    Rumyantsev, A. M.
    Voronkov, V. B.
    Parfen'eva, A. V.
    Tolmachev, V. A.
    Kulova, T. L.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (10) : 899 - 907
  • [50] Microstructured silicon anodes for lithium-ion batteries
    G. V. Li
    E. V. Astrova
    A. M. Rumyantsev
    V. B. Voronkov
    A. V. Parfen’eva
    V. A. Tolmachev
    T. L. Kulova
    A. M. Skundin
    Russian Journal of Electrochemistry, 2015, 51 : 899 - 907