TWO-DIMENSIONAL PAULI EQUATION IN NONCOMMUTATIVE PHASE-SPACE

被引:8
|
作者
Haouam, I [1 ]
机构
[1] Univ Freres Mentouri, Lab Phys Math & Phys Subatom LPMPS, Constantine 25000, Algeria
来源
UKRAINIAN JOURNAL OF PHYSICS | 2021年 / 66卷 / 09期
关键词
noncommutative phase-space; Pauli equation; Bopp-shift; semiclassical partition function; thermodynamic properties; HYDROGEN-ATOM SPECTRUM; MECHANICS;
D O I
10.15407/ujpe66.9.771
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Pauli equation in a two-dimensional noncommutative phase-space by considering a constant magnetic field perpendicular to the plane. The noncommutative problem is related to the equivalent commutative one through a set of two-dimensional Bopp-shift transformations. The energy spectrum and the wave function of the two-dimensional noncommutative Pauli equation are found, where the problem in question has been mapped to the Landau problem. In the classical limit, we have derived the noncommutative semiclassical partition function for one- and N-particle systems. The thermodynamic properties such as the Helmholtz free energy, mean energy, specific heat and entropy in noncommutative and commutative phase-spaces are determined. The impact of the phase-space noncommutativity on the Pauli system is successfully examined.
引用
收藏
页码:771 / 779
页数:9
相关论文
共 50 条
  • [31] Entanglement in phase-space distribution for an anisotropic harmonic oscillator in noncommutative space
    Pinaki Patra
    [J]. Quantum Information Processing, 22
  • [32] Perturbative quantization of two-dimensional space-time noncommutative QED
    Ghasemkhani, M.
    Sadooghi, N.
    [J]. PHYSICAL REVIEW D, 2010, 81 (04)
  • [33] Phase-space noncommutativity and the Dirac equation
    Bertolami, Orfeu
    Queiroz, Raquel
    [J]. PHYSICS LETTERS A, 2011, 375 (46) : 4116 - 4119
  • [34] PHASE-SPACE REPRESENTATIONS OF THE BLOCH EQUATION
    OCONNELL, RF
    WANG, L
    [J]. PHYSICAL REVIEW A, 1985, 31 (03) : 1707 - 1711
  • [35] Deformed Cλ-extended Heisenberg algebra in noncommutative phase-space
    Douari, Jamila
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (05) : 893 - 905
  • [36] The evolution of the magnetic structures in electron phase-space holes: Two-dimensional particle-in-cell simulations
    Wu, Mingyu
    Lu, Quanming
    Du, Aimin
    Xie, Jinlin
    Wang, Shui
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [37] Ground-state phase-space structures of two-dimensional ±J spin glasses: A network approach
    Cao, Xin
    Wang, Feng
    Han, Yilong
    [J]. PHYSICAL REVIEW E, 2015, 91 (06)
  • [38] DYNAMICS OF VIBRO-ROTATIONAL CO2-LASER TRANSITIONS IN A TWO-DIMENSIONAL PHASE-SPACE
    OPPO, GL
    TREDICCE, JR
    NARDUCCI, LM
    [J]. OPTICS COMMUNICATIONS, 1989, 69 (5-6) : 393 - 397
  • [39] Gauge invariant actions for the noncommutative phase-space relativistic particle
    Abreu, Everton M. C.
    Godinho, Cresus F. L.
    [J]. MODERN PHYSICS LETTERS A, 2017, 32 (38)
  • [40] Path- integral action of a particle in the noncommutative phase-space
    Gangopadhyay, Sunandan
    Halder, Aslam
    [J]. EPL, 2017, 117 (01)