Entanglement in phase-space distribution for an anisotropic harmonic oscillator in noncommutative space

被引:0
|
作者
Pinaki Patra
机构
[1] Brahmananda Keshab Chandra College,Department of Physics
关键词
Anisotropic oscillator; Peres-Horodecki criterion; Wigner distribution; Noncommutative space; Coherent state; Symplectic diagonalization;
D O I
暂无
中图分类号
学科分类号
摘要
The bipartite Gaussian state, corresponding to an anisotropic harmonic oscillator in a noncommutative space (NCS), is investigated with the help of Simon’s separability condition (generalized Peres-Horodecki criterion). It turns out that, to exhibit the entanglement between the noncommutative co-ordinates, the parameters (mass and frequency) have to satisfy a unique constraint equation. We have considered the most general form of an anisotropic oscillator in NCS, with both spatial and momentum noncommutativity. The system is transformed to the usual commutative space (with usual Heisenberg algebra) by a well-known Bopp shift. The system is transformed into an equivalent simple system by a unitary transformation, keeping the intrinsic symplectic structure (Sp(4,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sp(4,{\mathbb {R}})$$\end{document}) intact. Wigner quasiprobability distribution is constructed for the bipartite Gaussian state with the help of a Fourier transformation of the characteristic function. It is shown that the identification of the entangled degrees of freedom is possible by studying the Wigner quasiprobability distribution in phase space. We have shown that the co-ordinates are entangled only with the conjugate momentum corresponding to other co-ordinates.
引用
收藏
相关论文
共 50 条
  • [1] Entanglement in phase-space distribution for an anisotropic harmonic oscillator in noncommutative space
    Patra, Pinaki
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [2] Entanglement induced by noncommutativity: anisotropic harmonic oscillator in noncommutative space
    Abhishek Muhuri
    Debdeep Sinha
    Subir Ghosh
    [J]. The European Physical Journal Plus, 136
  • [3] Entanglement induced by noncommutativity: anisotropic harmonic oscillator in noncommutative space
    Muhuri, Abhishek
    Sinha, Debdeep
    Ghosh, Subir
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [4] Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space
    Ben Geloun, J.
    Gangopadhyay, Sunandan
    Scholtz, F. G.
    [J]. EPL, 2009, 86 (05)
  • [5] Entanglement and separability in the noncommutative phase-space scenario
    Bernardini, Alex E.
    Bastos, Catarina
    Bertolami, Orfeu
    Dias, Nuno Costa
    Prata, Joao Nuno
    [J]. 7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626
  • [6] Non-Hermitian two-dimensional harmonic oscillator in noncommutative phase-space
    N'Dolo, Emanonf Elias
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (04)
  • [7] PHASE-SPACE DISTRIBUTION OF AN N-DIMENSIONAL HARMONIC-OSCILLATOR
    SHLOMO, S
    PRAKASH, M
    [J]. NUCLEAR PHYSICS A, 1981, 357 (01) : 157 - 170
  • [8] Phase-space treatment of the driven quantum harmonic oscillator
    DIÓGENES CAMPOS
    [J]. Pramana, 2017, 88
  • [9] Phase-space treatment of the driven quantum harmonic oscillator
    Campos, Diogenes
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (03):
  • [10] Phase-space Wave Functions of Harmonic Oscillator in Nanomaterials
    Lu Jun
    [J]. FUNDAMENTAL OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 233-235 : 2154 - 2157