Entanglement in phase-space distribution for an anisotropic harmonic oscillator in noncommutative space

被引:0
|
作者
Pinaki Patra
机构
[1] Brahmananda Keshab Chandra College,Department of Physics
关键词
Anisotropic oscillator; Peres-Horodecki criterion; Wigner distribution; Noncommutative space; Coherent state; Symplectic diagonalization;
D O I
暂无
中图分类号
学科分类号
摘要
The bipartite Gaussian state, corresponding to an anisotropic harmonic oscillator in a noncommutative space (NCS), is investigated with the help of Simon’s separability condition (generalized Peres-Horodecki criterion). It turns out that, to exhibit the entanglement between the noncommutative co-ordinates, the parameters (mass and frequency) have to satisfy a unique constraint equation. We have considered the most general form of an anisotropic oscillator in NCS, with both spatial and momentum noncommutativity. The system is transformed to the usual commutative space (with usual Heisenberg algebra) by a well-known Bopp shift. The system is transformed into an equivalent simple system by a unitary transformation, keeping the intrinsic symplectic structure (Sp(4,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sp(4,{\mathbb {R}})$$\end{document}) intact. Wigner quasiprobability distribution is constructed for the bipartite Gaussian state with the help of a Fourier transformation of the characteristic function. It is shown that the identification of the entangled degrees of freedom is possible by studying the Wigner quasiprobability distribution in phase space. We have shown that the co-ordinates are entangled only with the conjugate momentum corresponding to other co-ordinates.
引用
收藏
相关论文
共 50 条
  • [21] The time-dependent forced anisotropic oscillator in noncommutative phase space
    Liang, Mai-Lin
    Chen, Qian
    [J]. PHYSICA SCRIPTA, 2011, 84 (01)
  • [22] The Harmonic Oscillator Influenced by Gravitational Wave in Noncommutative Quantum Phase Space
    Yakup, Rehimhaji
    Dulat, Sayipjamal
    Li, Kang
    Hekim, Mamatabdulla
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (04) : 1404 - 1414
  • [23] WIGNER PHASE-SPACE METHOD - APPLICATION TO A FORCED HARMONIC-OSCILLATOR
    SEBASTIAN, KL
    [J]. CHEMICAL PHYSICS LETTERS, 1981, 80 (03) : 531 - 532
  • [24] Dirac Oscillator in Noncommutative Phase Space
    Shaohong Cai
    Tao Jing
    Guangjie Guo
    Rukun Zhang
    [J]. International Journal of Theoretical Physics, 2010, 49 : 1699 - 1705
  • [25] Quantum uncertainties of the confined Harmonic Oscillator in position, momentum and phase-space
    Laguna, Humberto G.
    Sagar, Robin P.
    [J]. ANNALEN DER PHYSIK, 2014, 526 (11-12) : 555 - 566
  • [26] Dirac Oscillator in Noncommutative Phase Space
    Cai, Shaohong
    Jing, Tao
    Guo, Guangjie
    Zhang, Rukun
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (08) : 1699 - 1705
  • [27] DKP oscillator in noncommutative phase space
    Guo, Guangjie
    Long, Chaoyun
    Yang, Zuhua
    Qin, Shuijie
    [J]. CANADIAN JOURNAL OF PHYSICS, 2009, 87 (09) : 989 - 993
  • [28] Analytical and numerical analysis of a rotational invariant D = 2 harmonic oscillator in the light of different noncommutative phase-space configurations
    Everton M. C. Abreu
    Mateus V. Marcial
    Albert C. R. Mendes
    Wilson Oliveira
    [J]. Journal of High Energy Physics, 2013
  • [29] Analytical and numerical analysis of a rotational invariant D=2 harmonic oscillator in the light of different noncommutative phase-space configurations
    Abreu, Everton M. C.
    Marcial, Mateus V.
    Mendes, Albert C. R.
    Oliveira, Wilson
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):
  • [30] Thermodynamical properties of graphene in noncommutative phase-space
    Santos, Victor
    Maluf, R. V.
    Almeida, C. A. S.
    [J]. ANNALS OF PHYSICS, 2014, 349 : 402 - 410