Intelligent edge content caching: A deep recurrent reinforcement learning method

被引:3
|
作者
Xu, Haitao [1 ]
Sun, Yuejun [1 ]
Gao, Jingnan [1 ]
Guo, Jianbo [2 ]
机构
[1] Hangzhou Dianzi Univ, Hangzhou, Zhejiang, Peoples R China
[2] Hangzhou Hexing Elect Co Ltd, Hangzhou, Peoples R China
基金
美国国家科学基金会;
关键词
Edge computing; Edge caching; Edge intelligence; Deep recurrent reinforcement learning; MOBILE; COMMUNICATION; COMPUTATION; FRAMEWORK;
D O I
10.1007/s12083-022-01369-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rise of 5G network and the rapid growth of user equipment, there exists a gap between the stringent requirements of emerging applications and the actual functionality of the Internet. In particular, transmitting data over long network links imposes high costs, which can be addressed by the edge caching (EC) method. EC caches the content at the edge server to avoid the extraordinary cost of backhaul link communication. However, in existing EC efforts, it is common to assume either known content popularity or a two-phase caching that is predicted content popularity prior to the caching action, the former being less feasible and the latter increasing the cost of deployment to the real world. A caching strategy is proposed in this paper to cope with this problem that can be feasible end-to-end deployed and has a lower caching cost. Specifically, we first investigate the system cost, including network communication cost, cache over storage cost, and cache replacement cost. And we model the EC problem as a Markov Decision Process (MDP). Then, the Double Deep Recurrent Q Network (DDRQN) algorithm is studied to solve the EC-based MDP problem. Finally, compared with other intelligent caching strategies, the proposed caching strategy can improve the system reward by up to 24% and the cache hit rate by up to 22% under certain conditions.
引用
收藏
页码:2619 / 2632
页数:14
相关论文
共 50 条
  • [41] Deep Reinforcement Learning-based Edge Caching for Industrial Control Applications
    Zhang, Lei
    Xu, Hao
    Wang Guilin
    Yan, Wang
    Wang, Xiaojun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 5024 - 5029
  • [42] Federated Distributed Deep Reinforcement Learning for Recommendation-Enabled Edge Caching
    Zhou, Huan
    Wang, Hao
    Yu, Zhiwen
    Bin, Guo
    Xiao, Mingjun
    Wu, Jie
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (06) : 3640 - 3656
  • [43] MECC: A Mobile Edge Collaborative Caching Framework Empowered by Deep Reinforcement Learning
    Xu, Siya
    Liu, Xin
    Guo, Shaoyong
    Qiu, Xuesong
    Meng, Luoming
    IEEE NETWORK, 2021, 35 (04): : 176 - 183
  • [44] Attention Mechanism-Aided Deep Reinforcement Learning for Dynamic Edge Caching
    Teng, Ziyi
    Fang, Juan
    Yang, Huijing
    Yu, Lu
    Chen, Huijie
    Xiang, Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (06) : 10197 - 10213
  • [45] Deep Reinforcement Learning Empowered Edge Collaborative Caching Scheme for Internet of Vehicles
    Liu, Xin
    Xu, Siya
    Yang, Chao
    Wang, Zhili
    Zhang, Hao
    Chi, Jingye
    Li, Qinghan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 42 (01): : 271 - 287
  • [46] Federated Deep Reinforcement Learning for Internet of Things With Decentralized Cooperative Edge Caching
    Wang, Xiaofei
    Wang, Chenyang
    Li, Xiuhua
    Leung, Victor C. M.
    Taleb, Tarik
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9441 - 9455
  • [47] Federated Distributed Deep Reinforcement Learning for Recommendation-enabled Edge Caching
    Wang, Hao
    Zhou, Huan
    Li, Mingze
    Zhao, Liang
    Leung, Victor C. M.
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [48] Blockchain-enabled trust management for secure content caching in mobile edge computing using deep reinforcement learning
    Bounaira, Soumaya
    Alioua, Ahmed
    Souici, Ismahane
    INTERNET OF THINGS, 2024, 25
  • [49] Deep Reinforcement Learning-Based Mobility-Aware UAV Content Caching and Placement in Mobile Edge Networks
    Anokye, Stephen
    Ayepah-Mensah, Daniel
    Seid, Abegaz Mohammed
    Boateng, Gordon Owusu
    Sun, Guolin
    IEEE SYSTEMS JOURNAL, 2022, 16 (01): : 275 - 286
  • [50] SECURITY IN MOBILE EDGE CACHING WITH REINFORCEMENT LEARNING
    Xiao, Liang
    Wan, Xiaoyue
    Dai, Canhuang
    Du, Xiaojiang
    Chen, Xiang
    Guizani, Mohsen
    IEEE WIRELESS COMMUNICATIONS, 2018, 25 (03) : 116 - 122