Intelligent edge content caching: A deep recurrent reinforcement learning method

被引:3
|
作者
Xu, Haitao [1 ]
Sun, Yuejun [1 ]
Gao, Jingnan [1 ]
Guo, Jianbo [2 ]
机构
[1] Hangzhou Dianzi Univ, Hangzhou, Zhejiang, Peoples R China
[2] Hangzhou Hexing Elect Co Ltd, Hangzhou, Peoples R China
基金
美国国家科学基金会;
关键词
Edge computing; Edge caching; Edge intelligence; Deep recurrent reinforcement learning; MOBILE; COMMUNICATION; COMPUTATION; FRAMEWORK;
D O I
10.1007/s12083-022-01369-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rise of 5G network and the rapid growth of user equipment, there exists a gap between the stringent requirements of emerging applications and the actual functionality of the Internet. In particular, transmitting data over long network links imposes high costs, which can be addressed by the edge caching (EC) method. EC caches the content at the edge server to avoid the extraordinary cost of backhaul link communication. However, in existing EC efforts, it is common to assume either known content popularity or a two-phase caching that is predicted content popularity prior to the caching action, the former being less feasible and the latter increasing the cost of deployment to the real world. A caching strategy is proposed in this paper to cope with this problem that can be feasible end-to-end deployed and has a lower caching cost. Specifically, we first investigate the system cost, including network communication cost, cache over storage cost, and cache replacement cost. And we model the EC problem as a Markov Decision Process (MDP). Then, the Double Deep Recurrent Q Network (DDRQN) algorithm is studied to solve the EC-based MDP problem. Finally, compared with other intelligent caching strategies, the proposed caching strategy can improve the system reward by up to 24% and the cache hit rate by up to 22% under certain conditions.
引用
收藏
页码:2619 / 2632
页数:14
相关论文
共 50 条
  • [21] Partially Collaborative Edge Caching Based on Federated Deep Reinforcement Learning
    Lei, Meng
    Li, Qiang
    Ge, Xiaohu
    Pandharipande, Ashish
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 1389 - 1394
  • [22] Edge Caching for IoT Transient Data Using Deep Reinforcement Learning
    Sheng, Shuran
    Chen, Peng
    Chen, Zhimin
    Wu, Lenan
    Jiang, Hao
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 4477 - 4482
  • [23] Collaborative Edge Computing and Caching With Deep Reinforcement Learning Decision Agents
    Ren, Jianji
    Wang, Haichao
    Hou, Tingting
    Zheng, Shuai
    Tang, Chaosheng
    IEEE ACCESS, 2020, 8 : 120604 - 120612
  • [24] Deep Reinforcement Learning for Cooperative Edge Caching in Future Mobile Networks
    Li, Ding
    Han, Yiwen
    Wang, Chenyang
    Shi, GaoTao
    Wang, Xiaofei
    Li, Xiuhua
    Leung, Victor C. M.
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [25] Deep Reinforcement Learning-Based Edge Caching in Wireless Networks
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2020, 6 (01) : 48 - 61
  • [26] Collaborative Video Caching in the Edge Network using Deep Reinforcement Learning
    Lekharu, Anirban
    Gupta, Pranav
    Sur, Aridit
    Patra, Moumita
    ACM TRANSACTIONS ON INTERNET OF THINGS, 2024, 5 (03):
  • [27] Deep Reinforcement Learning for Edge Caching with Mobility Prediction in Vehicular Networks
    Choi, Yoonjeong
    Lim, Yujin
    SENSORS, 2023, 23 (03)
  • [28] Deep Reinforcement Learning-Based Edge Caching in Heterogeneous Networks
    Choi, Yoonjeong
    Lim, Yujin
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2022, 18 (06): : 803 - 812
  • [29] Personalized Collaborative Edge Caching With Federated Transfer Deep Reinforcement Learning
    Liu, Sanqiu
    Li, Qiang
    Pandharipande, Ashish
    Ge, Xiaohu
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (09) : 2096 - 2100
  • [30] Deep Reinforcement Learning for Energy-Efficient Edge Caching in Mobile Edge Networks
    Deng, Meng
    Huan, Zhou
    Kai, Jiang
    Zheng, Hantong
    Yue, Cao
    Peng, Chen
    CHINA COMMUNICATIONS, 2024, : 1 - 14