Faddeev random-phase approximation for molecules

被引:16
|
作者
Degroote, Matthias [1 ]
Van Neck, Dimitri [1 ]
Barbieri, Carlo [2 ]
机构
[1] Ctr Mol Modeling, B-9052 Zwijnaarde, Belgium
[2] Univ Surrey, Dept Phys, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 04期
关键词
ONE-PARTICLE; SPURIOUS SOLUTIONS; ELECTRON;
D O I
10.1103/PhysRevA.83.042517
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Faddeev random-phase approximation is a Green's function technique that makes use of Faddeev equations to couple the motion of a single electron to the two-particle-one-hole and two-hole-one-particle excitations. This method goes beyond the frequently used third-order algebraic diagrammatic construction method: all diagrams involving the exchange of phonons in the particle-hole and particle-particle channel are retained, but the phonons are now described at the level of the random-phase approximation, which includes ground-state correlations, rather than at the Tamm-Dancoff approximation level, where ground-state correlations are excluded. Previously applied to atoms, this paper presents results for small molecules at equilibrium geometry.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Sum rule in a consistent relativistic random-phase approximation
    Ma, ZY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (04) : 493 - 498
  • [42] COORDINATE-SPACE FORMALISM OF RANDOM-PHASE APPROXIMATION
    TSAI, SF
    PHYSICAL REVIEW C, 1978, 17 (05): : 1862 - 1870
  • [43] Quasiparticle nature of excited states in random-phase approximation
    Chimanski, E., V
    Carlson, B., V
    Capote, R.
    Koning, A. J.
    PHYSICAL REVIEW C, 2019, 99 (01)
  • [44] PHOTOIONIZATION OF BERYLLIUM IN THE MULTICONFIGURATION RELATIVISTIC RANDOM-PHASE APPROXIMATION
    CHI, HC
    HUANG, KN
    PHYSICAL REVIEW A, 1991, 43 (09): : 4742 - 4745
  • [45] Orbital, optimized, random-phase approximation and intermolecular interactions
    Voora, Vamsee
    Balasubramani, Ganesh
    Furche, Filipp
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [46] Finite amplitude method for the solution of the random-phase approximation
    Nakatsukasa, Takashi
    Inakura, Tsunenori
    Yabana, Kazuhiro
    PHYSICAL REVIEW C, 2007, 76 (02):
  • [47] Efficient calculation for the quasiparticle random-phase approximation matrix
    Avogadro, Paolo
    Nakatsukasa, Takashi
    PHYSICAL REVIEW C, 2013, 87 (01):
  • [48] Finite amplitude method for the quasiparticle random-phase approximation
    Avogadro, Paolo
    Nakatsukasa, Takashi
    PHYSICAL REVIEW C, 2011, 84 (01):
  • [49] RANDOM-PHASE APPROXIMATION IN THE FRACTIONAL-STATISTICS GAS
    FETTER, AL
    HANNA, CB
    LAUGHLIN, RB
    PHYSICAL REVIEW B, 1989, 39 (13): : 9679 - 9681
  • [50] BEYOND THE RANDOM-PHASE APPROXIMATION - A NEW APPROXIMATION SCHEME FOR THE POLARIZATION PROPAGATOR
    SCHIRMER, J
    PHYSICAL REVIEW A, 1982, 26 (05): : 2395 - 2416