Faddeev random-phase approximation for molecules

被引:16
|
作者
Degroote, Matthias [1 ]
Van Neck, Dimitri [1 ]
Barbieri, Carlo [2 ]
机构
[1] Ctr Mol Modeling, B-9052 Zwijnaarde, Belgium
[2] Univ Surrey, Dept Phys, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 04期
关键词
ONE-PARTICLE; SPURIOUS SOLUTIONS; ELECTRON;
D O I
10.1103/PhysRevA.83.042517
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Faddeev random-phase approximation is a Green's function technique that makes use of Faddeev equations to couple the motion of a single electron to the two-particle-one-hole and two-hole-one-particle excitations. This method goes beyond the frequently used third-order algebraic diagrammatic construction method: all diagrams involving the exchange of phonons in the particle-hole and particle-particle channel are retained, but the phonons are now described at the level of the random-phase approximation, which includes ground-state correlations, rather than at the Tamm-Dancoff approximation level, where ground-state correlations are excluded. Previously applied to atoms, this paper presents results for small molecules at equilibrium geometry.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Communication: Analytic gradients in the random-phase approximation
    Rekkedal, Johannes
    Coriani, Sonia
    Iozzi, Maria Francesca
    Teale, Andrew M.
    Helgaker, Trygve
    Pedersen, Thomas Bondo
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (08):
  • [32] Accuracy of the Faddeev random phase approximation for light atoms
    Barbieri, C.
    Van Neck, D.
    Degroote, M.
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [33] CATASTROPHE IN RANDOM-PHASE APPROXIMATION - CRITIQUE OF A THEORY OF PHASE TRANSITIONS
    WHEELER, JC
    CHANDLER, D
    JOURNAL OF CHEMICAL PHYSICS, 1971, 55 (04): : 1645 - +
  • [34] NEW FORMULATION OF THE RANDOM-PHASE APPROXIMATION OF ATOMIC PHYSICS
    VARRACCHIO, EF
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1984, 17 (18) : L611 - L615
  • [35] Renormalizing random-phase approximation by using exact pairing
    Tan Phuc, L.
    Quang Hung, N.
    Dinh Dang, N.
    PHYSICAL REVIEW C, 2019, 99 (06)
  • [36] Quasiparticle random-phase approximation with an optimal ground state
    Simkovic, F
    Smotlák, M
    Raduta, AA
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2001, 27 (08) : 1757 - 1765
  • [37] APPLICATION OF RELATIVISTIC RANDOM-PHASE APPROXIMATION TO PHOTOIONIZATION OF ATOMS
    JOHNSON, WR
    LIN, CD
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1977, 10 (09) : L331 - L334
  • [38] NONSPECTRAL DIRAC RANDOM-PHASE APPROXIMATION FOR FINITE NUCLEI
    SHEPARD, JR
    ROST, E
    MCNEIL, JA
    PHYSICAL REVIEW C, 1989, 40 (05): : 2320 - 2336
  • [39] Photons in dense nuclear matter: Random-phase approximation
    Stetina, Stephan
    Rrapaj, Ermal
    Reddy, Sanjay
    PHYSICAL REVIEW C, 2018, 97 (04)
  • [40] Nondipole effects in the photoionization of neon: Random-phase approximation
    Johnson, WR
    Derevianko, A
    Cheng, KT
    Dolmatov, VK
    Manson, ST
    PHYSICAL REVIEW A, 1999, 59 (05): : 3609 - 3613