Single-electron thermal devices coupled to a mesoscopic gate

被引:43
|
作者
Sanchez, Rafael [1 ]
Thierschmann, Holger [2 ]
Molenkamp, Laurens W. [3 ]
机构
[1] Univ Carlos III Madrid, Inst Gregorio Millan, E-28911 Madrid, Spain
[2] Delft Univ Technol, Fac Appl Sci, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] Univ Wurzburg, Phys Inst, Expt Phys 3, D-97074 Wurzburg, Germany
来源
NEW JOURNAL OF PHYSICS | 2017年 / 19卷
基金
欧洲研究理事会;
关键词
quantum dot; heat currents; thermal devices; single-electron tunneling; COULOMB-BLOCKADE OSCILLATIONS; HEAT-CONDUCTION; QUANTUM-DOT; ENERGY; THERMOPOWER; REFRIGERATION;
D O I
10.1088/1367-2630/aa8b94
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We theoretically investigate the propagation of heat currents in a three-terminal quantum dot engine. Electron-electron interactions introduce state-dependent processes which can be resolved by energy-dependent tunneling rates. We identify the relevant transitions which define the operation of the system as a thermal transistor or a thermal diode. In the former case, thermal-induced charge fluctuations in the gate dot modify the thermal currents in the conductor with suppressed heat injection, resulting in huge amplification factors and the possible gating with arbitrarily low energy cost. In the latter case, enhanced correlations of the state-selective tunneling transitions redistribute heat flows giving high rectification coefficients and the unexpected cooling of one conductor terminal by heating the other one. We propose quantum dot arrays as a possible way to achieve the extreme tunneling asymmetries required for the different operations.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Nano-Scale Programmable Logic Gate Based on Single-Electron Devices
    Ahmadian, Mehdi
    Sharifi, Mohammad Javad
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 42 - 47
  • [22] Statistics of single-electron signals in electron-multiplying charge-coupled devices
    Plakhotnik, T
    Chennu, A
    Zvyagin, AV
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (04) : 618 - 622
  • [23] Simulation of the nanoelectronic single-electron transistor and the nanoelectronic C-NOT single-electron gate
    Zardalidis, George T.
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 1303 - 1306
  • [24] Single-electron thermal noise
    Nishiguchi, Katsuhiko
    Ono, Yukinori
    Fujiwara, Akira
    NANOTECHNOLOGY, 2014, 25 (27)
  • [25] Single-electron and quantum SOI devices
    Ono, Y
    Yamazaki, K
    Nagase, M
    Horiguchi, S
    Shiraishi, K
    Takahashi, Y
    MICROELECTRONIC ENGINEERING, 2001, 59 (1-4) : 435 - 442
  • [26] Quantum-coupled single-electron thermal to electric conversion scheme
    Wu, D. M.
    Hagelstein, P. L.
    Chen, P.
    Sinha, K. P.
    Meulenberg, A.
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
  • [27] Adaptive simulation for single-electron devices
    Allec, Nicholas
    Knobel, Robert
    Shang, Li
    2008 DESIGN, AUTOMATION AND TEST IN EUROPE, VOLS 1-3, 2008, : 900 - +
  • [28] Silicon single-electron devices and their applications
    Takahashi, Y
    Fujiwara, A
    Ono, Y
    Murase, K
    30TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2000, : 411 - 420
  • [29] Silicon single-electron devices and their applications
    Takahashi, Y
    Ono, Y
    Fujiwara, A
    Inokawa, H
    2004: 7TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUITS TECHNOLOGY, VOLS 1- 3, PROCEEDINGS, 2004, : 624 - 629
  • [30] Single-Electron Devices With Input Discretizer
    Mizugaki, Yoshinao
    Takiguchi, Masashi
    Hayami, Shota
    Kawai, Akio
    Moriya, Masataka
    Usami, Kouichi
    Kobayashi, Tadayuki
    Shimada, Hiroshi
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (05) : 601 - 606