Models of fluidized granular materials: examples of non-equilibrium stationary states

被引:11
|
作者
Puglisi, A
Cecconi, F
Vulpiani, A
机构
[1] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] INFM, Ctr Stat Mech & Complex, Rome, Italy
[4] Ist Nazl Fis Nucl, Sez Roma La Sapienza, I-00185 Rome, Italy
关键词
D O I
10.1088/0953-8984/17/24/022
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We review some models of granular materials fluidized by means of external forces, such as random homogeneous forcing with damping, vibrating plates, flow in an inclined channel and flow in a double well potential. All these systems show the presence of density correlations and non-Gaussian velocity distributions. These models are useful in understanding the role of a kinetically defined 'temperature' (in this case the so-called granular temperature) in a nonequilibrium stationary state. In the homogeneously randomly driven gas the granular temperature is different from that of the driving bath. Moreover, two different granular materials mixed together may stay in a stationary state with different temperatures. At the same time, the granular temperature determines (as in equilibrium systems) the escape time in a double well potential.
引用
收藏
页码:S2715 / S2730
页数:16
相关论文
共 50 条
  • [1] Non-equilibrium and non-linear stationary states in thermoelectric materials
    Iwasaki, H
    Koyano, A
    Yamamura, Y
    Hori, H
    SOLID STATE COMMUNICATIONS, 2004, 130 (08) : 507 - 510
  • [2] Fluctuation relations in non-equilibrium stationary states of Ising models
    Piscitelli, A.
    Corberi, F.
    Gonnella, G.
    Pelizzola, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [3] Gibbsian Stationary Non-equilibrium States
    De Carlo, Leonardo
    Gabrielli, Davide
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (06) : 1191 - 1222
  • [4] Gibbsian Stationary Non-equilibrium States
    Leonardo De Carlo
    Davide Gabrielli
    Journal of Statistical Physics, 2017, 168 : 1191 - 1222
  • [5] Non-equilibrium stationary states in dissipative systems
    Farago, J
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2005, 800 : 527 - 532
  • [6] Theory of non-equilibrium stationary states as a theory of resonances
    Merkli, Marco
    Mueckt, Matthias
    Sigal, Israel Michael
    ANNALES HENRI POINCARE, 2007, 8 (08): : 1539 - 1593
  • [7] Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States
    L. Bertini
    A. De Sole
    D. Gabrielli
    G. Jona-Lasinio
    C. Landim
    Journal of Statistical Physics, 2002, 107 : 635 - 675
  • [8] Minimum Dissipation Principle in Stationary Non-Equilibrium States
    L. Bertini
    A. De Sole
    D. Gabrielli
    G. Jona-Lasinio
    C. Landim
    Journal of Statistical Physics, 2004, 116 : 831 - 841
  • [9] Minimum dissipation principle in stationary non-equilibrium states
    Bertini, L
    De Sole, A
    Gabrielli, D
    Jona-Lasinio, G
    Landim, C
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 831 - 841
  • [10] Theory of Non-Equilibrium Stationary States as a Theory of Resonances
    Marco Merkli
    Matthias Mück
    Israel Michael Sigal
    Annales Henri Poincaré, 2007, 8 : 1539 - 1593