Models of fluidized granular materials: examples of non-equilibrium stationary states

被引:11
|
作者
Puglisi, A
Cecconi, F
Vulpiani, A
机构
[1] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] INFM, Ctr Stat Mech & Complex, Rome, Italy
[4] Ist Nazl Fis Nucl, Sez Roma La Sapienza, I-00185 Rome, Italy
关键词
D O I
10.1088/0953-8984/17/24/022
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We review some models of granular materials fluidized by means of external forces, such as random homogeneous forcing with damping, vibrating plates, flow in an inclined channel and flow in a double well potential. All these systems show the presence of density correlations and non-Gaussian velocity distributions. These models are useful in understanding the role of a kinetically defined 'temperature' (in this case the so-called granular temperature) in a nonequilibrium stationary state. In the homogeneously randomly driven gas the granular temperature is different from that of the driving bath. Moreover, two different granular materials mixed together may stay in a stationary state with different temperatures. At the same time, the granular temperature determines (as in equilibrium systems) the escape time in a double well potential.
引用
收藏
页码:S2715 / S2730
页数:16
相关论文
共 50 条
  • [31] AN OPEN MICROSCOPIC MODEL OF HEAT CONDUCTION: EVOLUTION AND NON-EQUILIBRIUM STATIONARY STATES
    Komorowski, Tomasz
    Olla, Stefano
    Simon, Marielle
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (03) : 751 - 780
  • [32] Convergence of the likelihood ratio method for linear response of non-equilibrium stationary states
    Plechac, Petr
    Stoltz, Gabriel
    Wang, Ting
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (55) : S593 - S623
  • [33] Mesoscopic thermodynamics of stationary non-equilibrium states -: art. no. 35
    Santamaría-Holek, I
    Rubí, JM
    Pérez-Madrid, A
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [34] PHASE-TRANSITIONS IN STATIONARY NON-EQUILIBRIUM STATES OF MODEL LATTICE SYSTEMS
    KATZ, S
    LEBOWITZ, JL
    SPOHN, H
    PHYSICAL REVIEW B, 1983, 28 (03): : 1655 - 1658
  • [35] Disorder in non-equilibrium models
    Stinchcombe, RB
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (07) : 1473 - 1487
  • [36] Aging and stationary properties of non-equilibrium symmetrical three-state models
    Chatelain, Christophe
    Tome, Tania
    de Oliveira, Mario J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [37] Structures and non-equilibrium dynamics in granular media
    Luding, S
    COMPTES RENDUS PHYSIQUE, 2002, 3 (02) : 153 - 161
  • [38] STATIONARY STAGE OF NON-EQUILIBRIUM DYNAMICS OF ADSORPTION
    ZOLOTARE.PP
    KALINICH.AI
    DOKLADY AKADEMII NAUK SSSR, 1971, 199 (05): : 1098 - &
  • [39] NON-EQUILIBRIUM STATIONARY MODES OF BOUNDARY FRICTION
    Lyashenko, I. A.
    Metlov, L. S.
    Khomenko, A. V.
    Chepulskyi, S. N.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2011, 3 (03) : 59 - 69
  • [40] Stationary Non-equilibrium Solutions for Coagulation Systems
    Marina A. Ferreira
    Jani Lukkarinen
    Alessia Nota
    Juan J. L. Velázquez
    Archive for Rational Mechanics and Analysis, 2021, 240 : 809 - 875