Theory of Non-Equilibrium Stationary States as a Theory of Resonances

被引:0
|
作者
Marco Merkli
Matthias Mück
Israel Michael Sigal
机构
[1] Memorial University of Newfoundland,Department of Mathematics and Statistics
[2] Johannes Gutenberg-Universität,Fachbereich Mathematik
[3] University of Toronto,Department of Mathematics
来源
Annales Henri Poincaré | 2007年 / 8卷
关键词
Entropy Production; Annihilation Operator; Coupling Function; Selfadjoint Operator; Simple Eigenvalue;
D O I
暂无
中图分类号
学科分类号
摘要
We study a small quantum system (e.g., a simplified model for an atom or molecule) interacting with two bosonic or fermionic reservoirs (say, photon or phonon fields). We show that the combined system has a family of stationary states parametrized by two numbers, T1 and T2 (‘reservoir temperatures’). If T1 ≠ T2, then these states are non-equilibrium stationary states (NESS). In the latter case we show that they have nonvanishing heat fluxes and positive entropy production and are dynamically asymptotically stable. The latter means that the evolution with an initial condition, normal with respect to any state where the reservoirs are in equilibria at temperatures T1 and T2, converges to the corresponding NESS. Our results are valid for the temperatures satisfying the bound min (T1,T2) > g2 + α, where g is the coupling constant and 0 < α < 1 is a power related to the infra-red behaviour of the coupling functions.
引用
收藏
页码:1539 / 1593
页数:54
相关论文
共 50 条
  • [1] Theory of non-equilibrium stationary states as a theory of resonances
    Merkli, Marco
    Mueckt, Matthias
    Sigal, Israel Michael
    [J]. ANNALES HENRI POINCARE, 2007, 8 (08): : 1539 - 1593
  • [2] Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States
    L. Bertini
    A. De Sole
    D. Gabrielli
    G. Jona-Lasinio
    C. Landim
    [J]. Journal of Statistical Physics, 2002, 107 : 635 - 675
  • [3] Macroscopic fluctuation theory for stationary non-equilibrium states
    Bertini, L
    De Sole, A
    Gabrielli, D
    Jona-Lasinio, G
    Landim, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) : 635 - 675
  • [4] ON APPROACH TO NON-EQUILIBRIUM STATIONARY STATES AND THEORY OF TRANSPORT COEFFICIENTS
    BALESCU, R
    [J]. PHYSICA, 1961, 27 (07): : 693 - &
  • [5] Thermal field theory in non-equilibrium states
    Henning, PA
    Nakamura, K
    Yamanaka, Y
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (13-14): : 1599 - 1614
  • [6] Stationary Non equilibrium States in Kinetic Theory
    R. Esposito
    R. Marra
    [J]. Journal of Statistical Physics, 2020, 180 : 773 - 809
  • [7] Stationary Non equilibrium States in Kinetic Theory
    Esposito, R.
    Marra, R.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) : 773 - 809
  • [8] Landau theory for non-equilibrium steady states
    Aron, Camille
    Chamon, Claudio
    [J]. SCIPOST PHYSICS, 2020, 8 (05):
  • [9] Kinetic theory for non-equilibrium stationary states in long-range interacting systems
    Nardini, Cesare
    Gupta, Shamik
    Ruffo, Stefano
    Dauxois, Thierry
    Bouchet, Freddy
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [10] Gibbsian Stationary Non-equilibrium States
    Leonardo De Carlo
    Davide Gabrielli
    [J]. Journal of Statistical Physics, 2017, 168 : 1191 - 1222