A note on upper bounds for the maximum span in interval edge-colorings of graphs

被引:6
|
作者
Kamalian, R. R. [1 ]
Petrosyan, P. A. [2 ]
机构
[1] Russian Armenian State Univ, Dept Appl Math & Informat, Yerevan 0051, Armenia
[2] Yerevan State Univ, Dept Informat & Appl Math, Yerevan 0025, Armenia
关键词
Edge-coloring; Interval coloring; Bipartite graph; Diameter;
D O I
10.1016/j.disc.2012.01.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge-coloring of a graph G with colors 1, ..., t is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of Care distinct and form an interval of integers. In 1994, Asratian and Kamalian proved that if a connected graph G admits an interval t-coloring, then t <= (diam(G) + 1) (Delta(G) - 1) + 1, and if G is also bipartite, then this upper bound can be improved to t <= diam(G)(Delta(G) - 1) + 1, where Delta(G) is the maximum degree of G and diam(G) is the diameter of G. In this note, we show that these upper bounds cannot be significantly improved. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1393 / 1399
页数:7
相关论文
共 50 条