A note on upper bounds for the maximum span in interval edge-colorings of graphs

被引:6
|
作者
Kamalian, R. R. [1 ]
Petrosyan, P. A. [2 ]
机构
[1] Russian Armenian State Univ, Dept Appl Math & Informat, Yerevan 0051, Armenia
[2] Yerevan State Univ, Dept Informat & Appl Math, Yerevan 0025, Armenia
关键词
Edge-coloring; Interval coloring; Bipartite graph; Diameter;
D O I
10.1016/j.disc.2012.01.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge-coloring of a graph G with colors 1, ..., t is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of Care distinct and form an interval of integers. In 1994, Asratian and Kamalian proved that if a connected graph G admits an interval t-coloring, then t <= (diam(G) + 1) (Delta(G) - 1) + 1, and if G is also bipartite, then this upper bound can be improved to t <= diam(G)(Delta(G) - 1) + 1, where Delta(G) is the maximum degree of G and diam(G) is the diameter of G. In this note, we show that these upper bounds cannot be significantly improved. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1393 / 1399
页数:7
相关论文
共 50 条
  • [21] Normal edge-colorings of cubic graphs
    Mazzuoccolo, Giuseppe
    Mkrtchyan, Vahan
    JOURNAL OF GRAPH THEORY, 2020, 94 (01) : 75 - 91
  • [22] MINIMAL EDGE-COLORINGS OF COMPLETE GRAPHS
    CAMERON, PJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 11 (OCT): : 337 - 346
  • [23] Equitable Edge-Colorings of Simple Graphs
    Zhang, Xia
    Liu, Guizhen
    JOURNAL OF GRAPH THEORY, 2011, 66 (03) : 175 - 197
  • [24] Generalized edge-colorings of weighted graphs
    Obata, Yuji
    Nishizeki, Takao
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (01)
  • [25] Interval edge-colorings of complete graphs and n-dimensional cubes
    Petrosyan, P. A.
    DISCRETE MATHEMATICS, 2010, 310 (10-11) : 1580 - 1587
  • [26] ACYCLIC EDGE-COLORINGS OF SPARSE GRAPHS
    CARO, Y
    RODITTY, Y
    APPLIED MATHEMATICS LETTERS, 1994, 7 (01) : 63 - 67
  • [27] Consecutive Edge-Colorings of Generalized θ-Graphs
    Zhao, Yongqiang
    Chang, Gerard J.
    COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS, 2011, 7033 : 214 - +
  • [28] ON GRAPHS CRITICAL WITH RESPECT TO EDGE-COLORINGS
    YAP, HP
    DISCRETE MATHEMATICS, 1981, 37 (2-3) : 289 - 296
  • [29] TRANSFORMATIONS OF EDGE-COLORINGS OF CUBIC GRAPHS
    KOTZIG, A
    DISCRETE MATHEMATICS, 1975, 11 (3-4) : 391 - 399
  • [30] On list edge-colorings of subcubic graphs
    Juvan, M
    Mohar, B
    Skrekovski, R
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 137 - 149