Restrictive Preconditioning for Convection-Diffusion Distributed Control Problems

被引:1
|
作者
Feng, Wei [1 ]
Wang, Zeng-Qi [1 ,2 ,3 ]
Zhong, Ruo-Bing [1 ]
Muratova, Galina, V [4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, 865 Changning Rd, Shanghai 200050, Peoples R China
[3] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Sci & Engn Comp, Shanghai 200240, Peoples R China
[4] Southern Fed Univ, Lab Computat Mech, II Vorovich Inst Math Mech & Comp Sci, Rostov Na Donu 344090, Russia
关键词
Convection-diffusion distributed control problem; restrictive preconditioning; conju-gate gradient method; Chebyshev semi-iteration method; HERMITIAN SPLITTING ITERATION; CONJUGATE-GRADIENT METHODS; SYSTEMS; OPTIMIZATION; INEXACT;
D O I
10.4208/eajam.080621.030921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The restrictive preconditioning technique is employed in the preconditioned conjugate gradient and preconditioned Chebyshev iteration methods for the saddle point linear systems arising in convection-diffusion control problems. Utilizing an appropriate approximation of Schur complement, one obtains preconditioned matrix with eigenvalues located in the interval [1/2, 1]. The convergence rate of the methods are studied. Unlike the restrictively preconditioned conjugate gradient method, the restrictively preconditioned Chebyshev iteration method is more tolerant to the inexact execution of the preconditioning. It indicates that the preconditioned Chebyshev iteration method is more practical when dealing with large scale linear systems. Theoretical and numerical results demonstrate that the iteration count of the solvers used do not depend on the mesh size, the regularization parameter and on the Peclet number.
引用
收藏
页码:233 / 246
页数:14
相关论文
共 50 条
  • [41] Solution of convection-diffusion problems with the memory terms
    Kacur, J
    COMPUTATIONAL METHODS FOR FLOW AND TRANSPORT IN POROUS MEDIA, 2000, 17 : 93 - 106
  • [42] An adaptive multigrid strategy for convection-diffusion problems
    Vasileva, D
    Kuut, A
    Hemker, PW
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 138 - 145
  • [43] THE CHARACTERISTIC METHOD FOR THE STATIONS CONVECTION-DIFFUSION PROBLEMS
    BERMUDEZ, A
    DURANY, J
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (01): : 7 - 26
  • [44] AD-FDSD for convection-diffusion problems
    Zhang, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (01) : 257 - 271
  • [45] SUPERCONVERGENCE FOR CONVECTION-DIFFUSION PROBLEMS WITH LOW REGULARITY
    Ludwig, Lars
    Roos, Hans-Goerg
    APPLICATIONS OF MATHEMATICS 2012, 2012, : 173 - 187
  • [46] Modified exponential schemes for convection-diffusion problems
    Luo, C.
    Dlugogorski, B. Z.
    Moghtaderi, B.
    Kennedy, E. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) : 369 - 379
  • [47] Alternating triangular schemes for convection-diffusion problems
    Vabishchevich, P. N.
    Zakharov, P. E.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) : 576 - 592
  • [48] Finite volume methods for convection-diffusion problems
    Lazarov, RD
    Mishev, ID
    Vassilevski, PS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 31 - 55
  • [49] H-matrices for convection-diffusion problems with constant convection
    Le Borne, S
    COMPUTING, 2003, 70 (03) : 261 - 274
  • [50] DEFECT CORRECTION METHODS FOR CONVECTION DOMINATED CONVECTION-DIFFUSION PROBLEMS
    AXELSSON, O
    LAYTON, W
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (04): : 423 - 455