Restrictive Preconditioning for Convection-Diffusion Distributed Control Problems

被引:1
|
作者
Feng, Wei [1 ]
Wang, Zeng-Qi [1 ,2 ,3 ]
Zhong, Ruo-Bing [1 ]
Muratova, Galina, V [4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, 865 Changning Rd, Shanghai 200050, Peoples R China
[3] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Sci & Engn Comp, Shanghai 200240, Peoples R China
[4] Southern Fed Univ, Lab Computat Mech, II Vorovich Inst Math Mech & Comp Sci, Rostov Na Donu 344090, Russia
关键词
Convection-diffusion distributed control problem; restrictive preconditioning; conju-gate gradient method; Chebyshev semi-iteration method; HERMITIAN SPLITTING ITERATION; CONJUGATE-GRADIENT METHODS; SYSTEMS; OPTIMIZATION; INEXACT;
D O I
10.4208/eajam.080621.030921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The restrictive preconditioning technique is employed in the preconditioned conjugate gradient and preconditioned Chebyshev iteration methods for the saddle point linear systems arising in convection-diffusion control problems. Utilizing an appropriate approximation of Schur complement, one obtains preconditioned matrix with eigenvalues located in the interval [1/2, 1]. The convergence rate of the methods are studied. Unlike the restrictively preconditioned conjugate gradient method, the restrictively preconditioned Chebyshev iteration method is more tolerant to the inexact execution of the preconditioning. It indicates that the preconditioned Chebyshev iteration method is more practical when dealing with large scale linear systems. Theoretical and numerical results demonstrate that the iteration count of the solvers used do not depend on the mesh size, the regularization parameter and on the Peclet number.
引用
收藏
页码:233 / 246
页数:14
相关论文
共 50 条
  • [31] A hybrid multigrid method for convection-diffusion problems
    Khelifi, S. Chaabane
    Mechitoua, N.
    Huelsemann, F.
    Magoules, F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 711 - 719
  • [32] ANALYSIS OF THE DGFEM FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS
    Feistauer, Miloslav
    Kucera, Vaclav
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 32 : 33 - 48
  • [33] Boundary knot method for convection-diffusion problems
    Muzik, Juraj
    XXIV R-S-P SEMINAR, THEORETICAL FOUNDATION OF CIVIL ENGINEERING (24RSP) (TFOCE 2015), 2015, 111 : 582 - 588
  • [34] Analysis of the DGFEM for nonlinear convection-diffusion problems
    Charles University Prague, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic
    Electron. Trans. Numer. Anal., 2008, (33-48):
  • [35] Unconditionally Stable Schemes for Convection-Diffusion Problems
    Afanas'eva, N. M.
    Vabishchevich, P. N.
    Vasil'eva, M. V.
    RUSSIAN MATHEMATICS, 2013, 57 (03) : 1 - 11
  • [36] SOME INVERSE PROBLEMS FOR CONVECTION-DIFFUSION EQUATIONS
    Pyatkov, S. G.
    Safonov, E. I.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (04): : 36 - 50
  • [37] On uniqueness techniques for degenerate convection-diffusion problems
    Andreianov, Boris
    Igbida, Noureddine
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2012, 4 (1-2) : 3 - 34
  • [38] THE MORTAR ELEMENT METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    ACHDOU, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (01): : 117 - 123
  • [39] Solution of convection-diffusion problems with the memory terms
    Kacur, J
    APPLIED NONLINEAR ANALYSIS, 1999, : 199 - 212
  • [40] A fractional step θ-method for convection-diffusion problems
    Chrispell, J. C.
    Ervin, V. J.
    Jenkins, E. W.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) : 204 - 218