Cricket Match Analytics Using the Big Data Approach

被引:20
|
作者
Awan, Mazhar Javed [1 ]
Gilani, Syed Arbaz Haider [1 ]
Ramzan, Hamza [1 ]
Nobanee, Haitham [2 ,3 ,4 ]
Yasin, Awais [5 ]
Zain, Azlan Mohd [6 ]
Javed, Rabia [7 ]
机构
[1] Univ Management & Technol, Dept Software Engn, Lahore 54770, Pakistan
[2] Abu Dhabi Univ, Coll Business, Abu Dhabi 59911, U Arab Emirates
[3] Univ Oxford, Oxford Ctr Islamic Studies, Marston Rd, Oxford OX3 0EE, England
[4] Univ Liverpool, Fac Humanities & Social Sci, 12 Abercromby Sq, Liverpool L69 7WZ, Merseyside, England
[5] Natl Univ Technol, Dept Comp Engn, Islamabad 44000, Pakistan
[6] Univ Teknol Malaysia, Sch Comp, UTM Big Data Ctr, Skudai 81310, Kagawa, Malaysia
[7] Lahore Coll Women Univ, Dept Comp Sci, Lahore 54000, Pakistan
关键词
big data analytics; machine learning; cricket; match prediction; Spark ML; prediction model; PREDICTION; REGRESSION; MACHINE;
D O I
10.3390/electronics10192350
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cricket is one of the most liked, played, encouraged, and exciting sports in today's time that requires a proper advancement with machine learning and artificial intelligence (AI) to attain more accuracy. With the increasing number of matches with time, the data related to cricket matches and the individual player are increasing rapidly. Moreover, the need of using big data analytics and the opportunities of utilizing this big data effectively in many beneficial ways are also increasing, such as the selection process of players in the team, predicting the winner of the match, and many more future predictions using some machine learning models or big data techniques. We applied the machine learning linear regression model to predict the team scores without big data and the big data framework Spark ML. The experimental results are measured through accuracy, the root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE), respectively 95%, 30.2, 1350.34, and 28.2 after applying linear regression in Spark ML. Furthermore, our approach can be applied to other sports.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A Big Data Analytics Based Approach to Anomaly Detection
    Razaq, Abdul
    Tianfield, Huaglory
    Barrie, Peter
    [J]. 2016 3RD IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT), 2016, : 187 - 193
  • [22] A big data analytics approach to combat telecommunication vulnerabilities
    Jensen, Kristoffer
    Hai Thanh Nguyen
    Thanh Van Do
    Arnes, Andre
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2017, 20 (03): : 2363 - 2374
  • [23] Economic System Simulation With Big Data Analytics Approach
    Li, Menggang
    Li, Ting
    Quan, Daiyong
    Li, Wenrui
    [J]. IEEE ACCESS, 2020, 8 : 35572 - 35582
  • [24] Towards a Set Theoretical Approach to Big Data Analytics
    Mukkamala, Raghava Rao
    Hussain, Abid
    Vatrapu, Ravi
    [J]. 2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 629 - 636
  • [25] A big data analytics approach to combat telecommunication vulnerabilities
    Kristoffer Jensen
    Hai Thanh Nguyen
    Thanh Van Do
    André Årnes
    [J]. Cluster Computing, 2017, 20 : 2363 - 2374
  • [26] A big data analytics based machining optimisation approach
    Wei Ji
    Shubin Yin
    Lihui Wang
    [J]. Journal of Intelligent Manufacturing, 2019, 30 : 1483 - 1495
  • [27] Big Data Analytics for Earth Sciences: the EarthServer approach
    Baumann, Peter
    Mazzetti, Paolo
    Ungar, Joachim
    Barbera, Roberto
    Barboni, Damiano
    Beccati, Alan
    Bigagli, Lorenzo
    Boldrini, Enrico
    Bruno, Riccardo
    Calanducci, Antonio
    Campalani, Piero
    Clements, Oliver
    Dumitru, Alex
    Grant, Mike
    Herzig, Pasquale
    Kakaletris, George
    Laxton, John
    Koltsida, Panagiota
    Lipskoch, Kinga
    Mahdiraji, Alireza Rezaei
    Mantovani, Simone
    Merticariu, Vlad
    Messina, Antonio
    Misev, Dimitar
    Natali, Stefano
    Nativi, Stefano
    Oosthoek, Jelmer
    Pappalardo, Marco
    Passmore, James
    Rossi, Angelo Pio
    Rundo, Francesco
    Sen, Marcus
    Sorbera, Vittorio
    Sullivan, Don
    Torrisi, Mario
    Trovato, Leonardo
    Veratelli, Maria Grazia
    Wagner, Sebastian
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2016, 9 (01) : 3 - 29
  • [28] Big Data Analytics Framework for Predictive Analytics using Public Data with Privacy Preserving
    Ho, Duy H.
    Lee, Yugyung
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5395 - 5405
  • [29] Big data analytics and business analytics
    Duan, Lian
    Xiong, Ye
    [J]. JOURNAL OF MANAGEMENT ANALYTICS, 2015, 2 (01) : 1 - 21
  • [30] Big data and analytics
    Misovic, Andrej
    Duzik, Ondrej
    Pleva, Michal
    [J]. ERA OF SCIENCE DIPLOMACY: IMPLICATIONS FOR ECONOMICS, BUSINESS, MANAGEMENT AND RELATED DISCIPLINES (EDAMBA 2015), 2015, : 639 - 644