Control of transversal instabilities in reaction-diffusion systems

被引:4
|
作者
Totz, Sonja [1 ,2 ]
Loeber, Jakob [3 ,4 ]
Totz, Jan Frederik [4 ]
Engel, Harald [4 ]
机构
[1] Potsdam Inst Climate Impact Res, Telegrafenberg A61, D-14473 Potsdam, Germany
[2] Univ Potsdam, Dept Phys, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[4] Tech Univ Berlin, Inst Theoret Phys, EW 7-1,Hardenbergstr 36, D-10623 Berlin, Germany
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
关键词
traveling waves; control; transversal instabilities; AUTOCATALYTIC REACTION FRONTS; LATERAL INSTABILITIES; PATTERN-FORMATION; WAVE-PROPAGATION; EXCITABLE MEDIUM; MEDIA; CURVATURE; DYNAMICS; VELOCITY; GROWTH;
D O I
10.1088/1367-2630/aabce5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh-Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov-Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems
    Gafiychuk, V.
    Datsko, B.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) : 1101 - 1107
  • [32] Diffusion and mobility driven instabilities in a reaction-diffusion system: a review
    Riaz, Syed Shahed
    Ray, Deb Shankar
    INDIAN JOURNAL OF PHYSICS, 2007, 81 (11) : 1177 - 1204
  • [33] Turing-type instabilities in bulk-surface reaction-diffusion systems
    Raetz, Andreas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 289 : 142 - 152
  • [34] Boundary control of linear stochastic reaction-diffusion systems
    Wu, Kai-Ning
    Liu, Xiao-Zhen
    Shi, Peng
    Lim, Cheng-Chew
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (01) : 268 - 282
  • [35] Reaction-Diffusion Systems in Intracellular Molecular Transport and Control
    Soh, Siowling
    Byrska, Marta
    Kandere-Grzybowska, Kristiana
    Grzybowski, Bartosz A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (25) : 4170 - 4198
  • [36] Global existence for reaction-diffusion systems with nonlinear diffusion and control of mass
    Laamri, El Haj
    Pierre, Michel
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (03): : 571 - 591
  • [37] Multispecies reaction-diffusion systems
    Aghamohammadi, A
    Fatollahi, AH
    Khorrami, M
    Shariati, A
    PHYSICAL REVIEW E, 2000, 62 (04): : 4642 - 4649
  • [38] Resilience in reaction-diffusion systems
    van Vuuren, JH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1999, 63 (02) : 179 - 197
  • [39] SEGREGATION IN REACTION-DIFFUSION SYSTEMS
    TAITELBAUM, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 200 (1-4) : 155 - 164
  • [40] Time Delay-Induced Instabilities and Hopf Bifurcations in General Reaction-Diffusion Systems
    Chen, Shanshan
    Shi, Junping
    Wei, Junjie
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (01) : 1 - 38