Control of transversal instabilities in reaction-diffusion systems

被引:4
|
作者
Totz, Sonja [1 ,2 ]
Loeber, Jakob [3 ,4 ]
Totz, Jan Frederik [4 ]
Engel, Harald [4 ]
机构
[1] Potsdam Inst Climate Impact Res, Telegrafenberg A61, D-14473 Potsdam, Germany
[2] Univ Potsdam, Dept Phys, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[4] Tech Univ Berlin, Inst Theoret Phys, EW 7-1,Hardenbergstr 36, D-10623 Berlin, Germany
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
关键词
traveling waves; control; transversal instabilities; AUTOCATALYTIC REACTION FRONTS; LATERAL INSTABILITIES; PATTERN-FORMATION; WAVE-PROPAGATION; EXCITABLE MEDIUM; MEDIA; CURVATURE; DYNAMICS; VELOCITY; GROWTH;
D O I
10.1088/1367-2630/aabce5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh-Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov-Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [21] Influence of Porosity on Rayleigh-Taylor Instabilities in Reaction-Diffusion Systems
    Macias, L.
    Mueller, D.
    D'Onofrio, A.
    PHYSICAL REVIEW LETTERS, 2009, 102 (09)
  • [22] Boundary control for a class of reaction-diffusion systems
    Si Y.-C.
    Xie C.-K.
    Zhao N.
    International Journal of Automation and Computing, 2018, 15 (1) : 94 - 102
  • [23] Boundary Control for a Class of Reaction-diffusion Systems
    Yuan-Chao Si
    Cheng-Kang Xie
    Na Zhao
    International Journal of Automation and Computing, 2018, 15 (01) : 94 - 102
  • [24] Design and control of patterns in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    CHAOS, 2008, 18 (02)
  • [25] OPTIMAL CONTROL OF REACTION-DIFFUSION SYSTEMS WITH HYSTERESIS
    Muench, Christian
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (04) : 1453 - 1488
  • [26] Optimal control of a class of reaction-diffusion systems
    Casas, Eduardo
    Ryll, Christopher
    Troeltzsch, Fredi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (03) : 677 - 707
  • [27] Instabilities and patterns in coupled reaction-diffusion layers
    Catlla, Anne J.
    McNamara, Amelia
    Topaz, Chad M.
    PHYSICAL REVIEW E, 2012, 85 (02):
  • [28] Turing instabilities in a glycolysis reaction-diffusion system
    Atabaigi, Ali
    APPLICABLE ANALYSIS, 2024, 103 (02) : 377 - 392
  • [29] Diffusive instabilities in hyperbolic reaction-diffusion equations
    Zemskov, Evgeny P.
    Horsthemke, Werner
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [30] Different Types of Instabilities and Complex Dynamics in Reaction-Diffusion Systems With Fractional Derivatives
    Gafiychuk, Vasyl
    Datsko, Bohdan
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (03):