Forecast sensitivity to the observation error covariance in variational data assimilation

被引:2
|
作者
Daescu, Dacian N. [1 ]
机构
[1] Portland State Univ, Portland, OR 97207 USA
关键词
data assimilation; adjoint modeling; sensitivity analysis; OBSERVATION IMPACT; STATISTICS; DIAGNOSIS; ENSEMBLE; 4D-VAR;
D O I
10.1016/j.procs.2010.04.142
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The development of the adjoint of the forecast model and of the adjoint of the data assimilation system (adjoint-DAS) make feasible the evaluation of the derivative-based forecast sensitivity to DAS input parameters in numerical weather prediction (NWP). The adjoint estimation of the forecast sensitivity to the observation error covariance in the DAS is considered as a practical approach to provide all-at-once first order estimates to the forecast impact as a result of variations in the specification of the observation error statistics and guidance for tuning of error covariance parameters. The proposed methodology extends the capabilities of the adjoint modeling tools currently in place at major NWP centers for observation sensitivity and observation impact analysis. Illustrative numerical results are presented with the fifth-generation NASA Goddard Earth Observing System (GEOS-5) atmospheric DAS and its adjoint.
引用
收藏
页码:1271 / 1279
页数:9
相关论文
共 50 条
  • [41] Variational Data Assimilation for the Sea Thermodynamics Model and Sensitivity of Marine Characteristics to Observation Errors
    V. P. Shutyaev
    E. I. Parmuzin
    Izvestiya, Atmospheric and Oceanic Physics, 2023, 59 : 722 - 730
  • [42] Observational error covariance matrices for radar data assimilation
    Keeler, RJ
    Ellis, SM
    PHYSICS AND CHEMISTRY OF THE EARTH PART B-HYDROLOGY OCEANS AND ATMOSPHERE, 2000, 25 (10-12): : 1277 - 1280
  • [43] Wavelet approximation of error covariance propagation in data assimilation
    Tangborn, A
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2004, 56 (01) : 16 - 28
  • [44] Error covariance estimation for Doppler wind data assimilation
    Xu, Q
    Wang, LL
    Nai, K
    31ST CONFERENCE ON RADAR METEOROLOGY, VOLS 1 AND 2, 2003, : 108 - 109
  • [45] Hessian-based covariance approximations in variational data assimilation
    Gejadze, Igor Yu.
    Shutyaev, Victor P.
    Le Dimet, Francois-Xavier
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2018, 33 (01) : 25 - 39
  • [46] Sensitivity with respect to observations in variational data assimilation
    Shutyaev, Victor
    Le Dimet, Francois-Xavier
    Shubina, Elena
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2017, 32 (01) : 61 - 71
  • [47] Sensitivity of Functionals of Variational Data Assimilation Problems
    Shutyaev, V. P.
    Le Dimet, F. -X.
    DOKLADY MATHEMATICS, 2019, 99 (03) : 295 - 298
  • [49] Sensitivity of Functionals of Variational Data Assimilation Problems
    V. P. Shutyaev
    F.-X. Le Dimet
    Doklady Mathematics, 2019, 99 : 295 - 298
  • [50] Investigating the role of prior and observation error correlations in improving a model forecast of forest carbon balance using Four-dimensional Variational data assimilation
    Pinnington, Ewan M.
    Casella, Eric
    Dance, Sarah L.
    Lawless, Amos S.
    Morison, James I. L.
    Nichols, Nancy K.
    Wilkinson, Matthew
    Quaife, Tristan L.
    AGRICULTURAL AND FOREST METEOROLOGY, 2016, 228 : 299 - 314