Forecast sensitivity to the observation error covariance in variational data assimilation

被引:2
|
作者
Daescu, Dacian N. [1 ]
机构
[1] Portland State Univ, Portland, OR 97207 USA
关键词
data assimilation; adjoint modeling; sensitivity analysis; OBSERVATION IMPACT; STATISTICS; DIAGNOSIS; ENSEMBLE; 4D-VAR;
D O I
10.1016/j.procs.2010.04.142
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The development of the adjoint of the forecast model and of the adjoint of the data assimilation system (adjoint-DAS) make feasible the evaluation of the derivative-based forecast sensitivity to DAS input parameters in numerical weather prediction (NWP). The adjoint estimation of the forecast sensitivity to the observation error covariance in the DAS is considered as a practical approach to provide all-at-once first order estimates to the forecast impact as a result of variations in the specification of the observation error statistics and guidance for tuning of error covariance parameters. The proposed methodology extends the capabilities of the adjoint modeling tools currently in place at major NWP centers for observation sensitivity and observation impact analysis. Illustrative numerical results are presented with the fifth-generation NASA Goddard Earth Observing System (GEOS-5) atmospheric DAS and its adjoint.
引用
收藏
页码:1271 / 1279
页数:9
相关论文
共 50 条
  • [31] VARIATIONAL DATA ASSIMILATION USING WAVELET BACKGROUND ERROR COVARIANCE: INITIALIZATION OF TYPHOON KAEMI (2006)
    张卫民
    曹小群
    肖庆农
    宋君强
    朱小谦
    王舒畅
    JournalofTropicalMeteorology, 2010, 16 (04) : 333 - 340
  • [32] VARIATIONAL DATA ASSIMILATION USING WAVELET BACKGROUND ERROR COVARIANCE: INITIALIZATION OF TYPHOON KAEMI (2006)
    Zhang Wei-min
    Cao Xiao-qun
    Xiao Qin-nong
    Song Jun-qiang
    Zhu Xiao-qian
    Wang Shu-chang
    JOURNAL OF TROPICAL METEOROLOGY, 2010, 16 (04) : 333 - 340
  • [33] Sensitivity analysis in variational data assimilation
    LeDimet, FX
    Ngodock, HE
    Luong, B
    Verron, J
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 1997, 75 (1B) : 245 - 255
  • [34] Efficient Ensemble Covariance Localization in Variational Data Assimilation
    Bishop, Craig H.
    Hodyss, Daniel
    Steinle, Peter
    Sims, Holly
    Clayton, Adam M.
    Lorenc, Andrew C.
    Barker, Dale M.
    Buehner, Mark
    MONTHLY WEATHER REVIEW, 2011, 139 (02) : 573 - 580
  • [35] Observation error covariance specification in dynamical systems for data assimilation using recurrent neural networks
    Sibo Cheng
    Mingming Qiu
    Neural Computing and Applications, 2022, 34 : 13149 - 13167
  • [36] Observation error covariance specification in dynamical systems for data assimilation using recurrent neural networks
    Cheng, Sibo
    Qiu, Mingming
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (16): : 13149 - 13167
  • [37] On deterministic error analysis in variational data assimilation
    Le Dimet, FX
    Shutyaev, V
    NONLINEAR PROCESSES IN GEOPHYSICS, 2005, 12 (04) : 481 - 490
  • [38] A posteriori error covariances in variational data assimilation
    Shutyaev, V. P.
    Le Dimet, F. -X.
    Gejadze, I. Yu.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (02) : 161 - 169
  • [39] On analysis error covariances in variational data assimilation
    Gejadze, I. Yu.
    Le Dimet, F. -X.
    Shutyaev, V.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (04): : 1847 - 1874
  • [40] Variational Data Assimilation for the Sea Thermodynamics Model and Sensitivity of Marine Characteristics to Observation Errors
    Shutyaev, V. P.
    Parmuzin, E. I.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2023, 59 (06) : 722 - 730