Symbolic dynamics of Belykh-type maps

被引:1
|
作者
Li, Denghui [1 ]
Xie, Jianhua [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech & Engn, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
discontinuous piecewise linear map; symbolic dynamics; pruning front; primary pruned region; horseshoe; PRUNING FRONT CONJECTURE; STATISTICAL PROPERTIES; SLIDING BIFURCATIONS; KNEADING THEORY; LOZI MAPPINGS; DIMENSION; SYSTEMS;
D O I
10.1007/s10483-016-2080-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The symbolic dynamics of a Belykh-type map (a two-dimensional discontinuous piecewise linear map) is investigated. The admissibility condition for symbol sequences named the pruning front conjecture is proved under a hyperbolicity condition. Using this result, a symbolic dynamics model of the map is constructed according to its pruning front and primary pruned region. Moreover, the boundary of the parameter region in which the map is chaotic of a horseshoe type is given.
引用
收藏
页码:671 / 682
页数:12
相关论文
共 50 条
  • [31] COMPUTATION OF SYMBOLIC DYNAMICS FOR TWO-DIMENSIONAL PIECEWISE-AFFINE MAPS
    Sella, Lorenzo
    Collins, Pieter
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (03): : 739 - 767
  • [32] POISSON PROCESSES FOR SUBSYSTEMS OF FINITE TYPE IN SYMBOLIC DYNAMICS
    Chazottes, Jean-Rene
    Coelho, Zaqueu
    Collet, Pierre
    [J]. STOCHASTICS AND DYNAMICS, 2009, 9 (03) : 393 - 422
  • [33] Self-Organizing Maps for Mixed Feature-Type Symbolic Data
    Hajjar, Chantal
    Hamdan, Hani
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2012, : 135 - 140
  • [34] Symbolic partition in chaotic maps
    Chai, Misha
    Lan, Yueheng
    [J]. CHAOS, 2021, 31 (03)
  • [35] Symbolic encoding in symplectic maps
    Christiansen, F
    Politi, A
    [J]. NONLINEARITY, 1996, 9 (06) : 1623 - 1640
  • [36] Symbolic dynamics
    Voss, A
    Wessel, N
    Kurths, J
    Witt, A
    Schirdewan, A
    Osterziel, KJ
    Malik, M
    Dietz, R
    [J]. ADVANCES IN NONINVASIVE ELECTROCARDIOGRAPHIC MONITORING TECHNIQUES, 2000, 229 : 429 - 437
  • [37] Symbolic dynamics
    Morse, M
    Hedlund, GA
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1938, 60 : 815 - 866
  • [39] Batch self-organizing maps for mixed feature-type symbolic data
    de Carvalho, Francisco de A. T.
    Barbosa, Gibson B. N.
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [40] Complex dynamics and symbolic dynamics
    Blanchard, P
    Devaney, RL
    Keen, L
    [J]. SYMBOLIC DYNAMICS AND ITS APPLICATIONS, 2004, 60 : 37 - 60