Theory driven machine learning models for predicting symptoms of problematic pornography use and related psychological processes

被引:0
|
作者
Oelker, Andreas [1 ,2 ]
Muller, Silke M. [1 ,2 ,3 ]
Brand, Matthias [1 ,2 ,3 ]
Antons, Stephanie [1 ,2 ,3 ]
机构
[1] Univ Duisburg Essen, Dept Gen Psychol Cognit, Duisburg, Germany
[2] Univ Duisburg Essen, Ctr Behav Addict Res CeBAR, Duisburg, Germany
[3] Erwin L Hahn Inst Magnet Resonance Imaging, Essen, Germany
关键词
machine learning; pornography use; data exploration; pornography addiction; prediction;
D O I
暂无
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
S-8D3
引用
收藏
页码:238 / 238
页数:1
相关论文
共 50 条
  • [41] Utilization of machine learning models in predicting caries risk groups and oral health-related risk factors in adults
    Ciftci, Burak Tunahan
    Asantogrol, Firdevs
    [J]. BMC ORAL HEALTH, 2024, 24 (01)
  • [42] Predicting haemoglobin deferral using machine learning models: Can we use the same prediction model across countries?
    Meulenbeld, Amber
    Toivonen, Jarkko
    Vinkenoog, Marieke
    Brits, Tinus
    Swanevelder, Ronel
    de Clippel, Dorien
    Compernolle, Veerle
    Karki, Surendra
    Welvaert, Marijke
    van den Hurk, Katja
    van Rosmalen, Joost
    Lesaffre, Emmanuel
    Janssen, Mart
    Arvas, Mikko
    [J]. VOX SANGUINIS, 2024, 119 (07) : 758 - 763
  • [43] Efficacious application of data-driven machine learning models for predicting and optimizing the flexural tensile strength of fiber-reinforced concrete
    Abbas, Yassir M.
    Khan, Mohammad Iqbal
    [J]. STRUCTURES, 2024, 64
  • [44] Validation of Random Forest Machine Learning Models to Predict Dementia-Related Neuropsychiatric Symptoms in Real-World Data
    Mar, Javier
    Gorostiza, Ania
    Ibarrondo, Oliver
    Cernuda, Carlos
    Arrospide, Arantzazu
    Iruin, Alvaro
    Larranaga, Igor
    Tainta, Mikel
    Ezpeleta, Enaitz
    Alberdi, Ane
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2020, 77 (02) : 855 - 864
  • [45] Computationally Scalable and Clinically Sound: Laying the Groundwork to Use Machine Learning Techniques for Social Media and Language Data in Predicting Psychiatric Symptoms
    Kelly, Deanna
    Coppersmith, Glen
    Dickerson, John
    Espy-Wilson, Carol
    Michel, Hanna
    Resnik, Philip
    [J]. BIOLOGICAL PSYCHIATRY, 2022, 91 (09) : S50 - S50
  • [46] Machine learning models for predicting the use of different animal breeding services in smallholder dairy farms in Sub-Saharan Africa
    G. Mwanga
    S. Lockwood
    D. F. N. Mujibi
    Z. Yonah
    M. G. .G. Chagunda
    [J]. Tropical Animal Health and Production, 2020, 52 : 1081 - 1091
  • [47] Machine learning models for predicting the use of different animal breeding services in smallholder dairy farms in Sub-Saharan Africa
    Mwanga, G.
    Lockwood, S.
    Mujibi, D. F. N.
    Yonah, Z.
    Chagunda, M. G. G.
    [J]. TROPICAL ANIMAL HEALTH AND PRODUCTION, 2020, 52 (03) : 1081 - 1091
  • [48] Typical Meteorological Year and Actual Weather Data in Data-Driven Machine Learning Models for Residential Building Energy Use
    Kamel, Ehsan
    Sheikh, Shaya
    [J]. ASHRAE TRANSACTIONS 2020, VOL 126, 2020, 126 : 88 - 95
  • [49] Development of machine-learning models using pharmacy inquiry database for predicting dose-related inquiries in a tertiary teaching hospital
    Cho, Jungwon
    Lee, Ah Ra
    Koo, Dongjun
    Kim, Koenhee
    Jeong, Young Mi
    Lee, Ho-Young
    Lee, Eunkyung Euni
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 185
  • [50] Development and performance comparison of optimized machine learning-based regression models for predicting energy-related carbon dioxide emissions
    Koca Akkaya E.
    Akkaya A.V.
    [J]. Environmental Science and Pollution Research, 2023, 30 (58) : 122381 - 122392