Theory driven machine learning models for predicting symptoms of problematic pornography use and related psychological processes

被引:0
|
作者
Oelker, Andreas [1 ,2 ]
Muller, Silke M. [1 ,2 ,3 ]
Brand, Matthias [1 ,2 ,3 ]
Antons, Stephanie [1 ,2 ,3 ]
机构
[1] Univ Duisburg Essen, Dept Gen Psychol Cognit, Duisburg, Germany
[2] Univ Duisburg Essen, Ctr Behav Addict Res CeBAR, Duisburg, Germany
[3] Erwin L Hahn Inst Magnet Resonance Imaging, Essen, Germany
关键词
machine learning; pornography use; data exploration; pornography addiction; prediction;
D O I
暂无
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
S-8D3
引用
收藏
页码:238 / 238
页数:1
相关论文
共 50 条
  • [31] Machine Learning Models for Predicting and Classifying the Tensile Strength of Polymeric Films Fabricated via Different Production Processes
    Altarazi, Safwan
    Allaf, Rula
    Alhindawi, Firas
    [J]. MATERIALS, 2019, 12 (09)
  • [32] Development of machine learning-based models for describing processes in a continuous solar-driven biomass gasifier
    Tasneem, Shadma
    Ageeli, Abeer Ali
    Alamier, Waleed M.
    Hasan, Nazim
    Goodarzi, Marjan
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 : 718 - 738
  • [33] Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns
    Ali, Aliyuda
    [J]. ENERGY, 2021, 229
  • [34] Predicting coated-nanoparticle drug release systems with perturbation-theory machine learning (PTML) models
    Santana, Ricardo
    Zuluaga, Robin
    Ganan, Piedad
    Arrasate, Sonia
    Onieva, Enrique
    Gonzalez-Diaz, Humbert
    [J]. NANOSCALE, 2020, 12 (25) : 13471 - 13483
  • [35] Machine learning-driven scenario-based models for predicting desert dust sources in central playas of Iran
    Jafari, Reza
    Amiri, Mohadeseh
    Jebali, Atefeh
    [J]. CATENA, 2024, 234
  • [36] Predicting landslide susceptibility based on decision tree machine learning models under climate and land use changes
    Quoc Bao Pham
    Pal, Subodh Chandra
    Chakrabortty, Rabin
    Saha, Asish
    Janizadeh, Saeid
    Ahmadi, Kourosh
    Khedher, Khaled Mohamed
    Duong Tran Anh
    Tiefenbacher, John P.
    Bannari, Abderrazak
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (25) : 7881 - 7907
  • [37] DATA-DRIVEN MACHINE LEARNING MODELS AS PROGNOSTIC TOOL FOR PREDICTING SURVIVAL OUTCOMES IN PEDIATRIC PATIENTS WITH GLIOMA OF THE OPTIC APPARATUS
    Brown, Nolan
    Kuo, Cathleen
    Gendreau, Julian
    [J]. NEURO-ONCOLOGY, 2023, 25
  • [38] Predicting CO Interaction and Activation on Inhomogeneous Ru Nanoparticles Using Density Functional Theory Calculations and Machine Learning Models
    Rocabado, David S. Rivera
    Aizawa, Mika
    Ishimoto, Takayoshi
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (47): : 23010 - 23022
  • [39] Use of machine learning models for "supervised classification" of legislative proposals related to health in the Brazilian national congress
    Gomes, Fabio
    [J]. ISRAEL JOURNAL OF HEALTH POLICY RESEARCH, 2019, 8 (01):
  • [40] Multi-region models built with machine and deep learning for predicting several heat-related health outcomes
    Boudreault, Jeremie
    Ruf, Annabel
    Campagna, Celine
    Chebana, Fateh
    [J]. SUSTAINABLE CITIES AND SOCIETY, 2024, 115