Theory driven machine learning models for predicting symptoms of problematic pornography use and related psychological processes

被引:0
|
作者
Oelker, Andreas [1 ,2 ]
Muller, Silke M. [1 ,2 ,3 ]
Brand, Matthias [1 ,2 ,3 ]
Antons, Stephanie [1 ,2 ,3 ]
机构
[1] Univ Duisburg Essen, Dept Gen Psychol Cognit, Duisburg, Germany
[2] Univ Duisburg Essen, Ctr Behav Addict Res CeBAR, Duisburg, Germany
[3] Erwin L Hahn Inst Magnet Resonance Imaging, Essen, Germany
关键词
machine learning; pornography use; data exploration; pornography addiction; prediction;
D O I
暂无
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
S-8D3
引用
收藏
页码:238 / 238
页数:1
相关论文
共 50 条
  • [1] Psychological and neuroscientific findings related to problematic pornography use
    Brand, Matthias
    Potenza, Marc N.
    [J]. JOURNAL OF BEHAVIORAL ADDICTIONS, 2022, 11 : 163 - 163
  • [2] Predicting problematic pornography use: A large-scale machine learning study across 70+cross-sectional and longitudinal samples
    Bothe, Beata
    Vaillancourt-Morel, Marie-Pier
    Bergeron, Sophie
    Ivaskevics, Krisztian
    Hermann, Zsombor
    Kraus, Shane
    Grubbs, Joshua B.
    [J]. JOURNAL OF BEHAVIORAL ADDICTIONS, 2022, 11 : 193 - 193
  • [3] Self-Perceived Problematic Use of Online Pornography Is Linked to Clinically Relevant Levels of Psychological Distress and Psychopathological Symptoms
    Mennig, Manuel
    Tennie, Sophia
    Barke, Antonia
    [J]. ARCHIVES OF SEXUAL BEHAVIOR, 2022, 51 (02) : 1313 - 1321
  • [4] Self-Perceived Problematic Use of Online Pornography Is Linked to Clinically Relevant Levels of Psychological Distress and Psychopathological Symptoms
    Manuel Mennig
    Sophia Tennie
    Antonia Barke
    [J]. Archives of Sexual Behavior, 2022, 51 : 1313 - 1321
  • [5] Identifying the psychological processes delineating non-problematic versus problematic binge-watching: A machine learning analytical approach
    Flayelle, Maeva
    Elhai, Jon
    Maurage, Pierre
    Voegele, Claus
    Brevers, Damien
    Baggio, Stephanie
    Billieux, Joel
    [J]. JOURNAL OF BEHAVIORAL ADDICTIONS, 2022, 11 : 160 - 160
  • [6] MACHINE LEARNING-BASED PREDICTIVE MODELS OF BEHAVIORAL AND PSYCHOLOGICAL SYMPTOMS OF DEMENTIA
    Cho, Eunhee
    Kim, Sujin
    Heo, Seok-Jae
    Shin, Jinhee
    Ye, Byoung Seok
    Lee, Jun Hong
    Kang, Bada
    [J]. INNOVATION IN AGING, 2021, 5 : 645 - 645
  • [7] Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles
    Zhang, Fan
    Wang, Zhuang
    Peijnenburg, Willie J. G. M.
    Vijver, Martina G.
    [J]. ENVIRONMENT INTERNATIONAL, 2023, 177
  • [8] Predicting Perceived Stress Related to the Covid-19 Outbreak through Stable Psychological Traits and Machine Learning Models
    Flesia, Luca
    Monaro, Merylin
    Mazza, Cristina
    Fietta, Valentina
    Colicino, Elena
    Segatto, Barbara
    Roma, Paolo
    [J]. JOURNAL OF CLINICAL MEDICINE, 2020, 9 (10) : 1 - 17
  • [9] Predicting problematic smartphone use based on early maladaptive schemas by using machine learning classification algorithms
    Ibrahim Arpaci
    [J]. Journal of Rational-Emotive & Cognitive-Behavior Therapy, 2023, 41 : 634 - 643
  • [10] Predicting problematic smartphone use based on early maladaptive schemas by using machine learning classification algorithms
    Arpaci, Ibrahim
    [J]. JOURNAL OF RATIONAL-EMOTIVE AND COGNITIVE-BEHAVIOR THERAPY, 2023, 41 (03): : 634 - 643