Forecast of solar energy resource by using neural network methods

被引:0
|
作者
Fiorin, Daniel V. [1 ]
Martins, Fernando R. [2 ]
Schuch, Nelson J. [1 ]
Pereira, Enio B. [2 ]
机构
[1] Inst Nacl Pesquisas Espaciais, Ctr Reg Sul Pesquisas Espaciais, Santa Maria, RS, Brazil
[2] Inst Nacl Pesquisas Espaciais, Ctr Ciencia Sistema Terrestre, Sao Jose Dos Campos, SP, Brazil
来源
关键词
solar energy; artificial neural networks; atmospheric modeling; numeric mesoscale models; RADIATION; MODEL; MM5;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This work aims at discussing the artificial neural networks (ANN) and some applications in renewable energy assessment. First, the paper describes the statistical relevance of this tool in different areas of knowledge and the main ANN concepts and configurations. Finally, the paper presents and discusses the use of ANN for the solar energy assessment in Brazil by using data collected in SONDA sites operated by the Center for Earth System Science of the Brazilian Institute for Space Research. The results show that ANN can provide reliable estimates with better performance than other statistical tools.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Solar Photovoltaic Energy Production Forecast Using Neural Networks
    Dumitru, Cristian-Dragos
    Gligor, Adrian
    Enachescu, Calin
    9TH INTERNATIONAL CONFERENCE INTERDISCIPLINARITY IN ENGINEERING, INTER-ENG 2015, 2016, 22 : 808 - 815
  • [2] The Forecast of Energy Demand on Artificial Neural Network
    Wang Jin-ming
    Liang Xin-heng
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL III, PROCEEDINGS, 2009, : 31 - 35
  • [3] Using a neural network to forecast inflation
    Aiken, Milam
    Industrial Management and Data Systems, 1999, 99 (07): : 296 - 301
  • [4] Using a neural network to forecast inflation
    Aiken, M
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 1999, 99 (7-8) : 296 - 301
  • [5] Enhancing Solar Energy Forecast Using Multi-Column Convolutional Neural Network and Multipoint Time Series Approach
    Kumar, Anil
    Kashyap, Yashwant
    Kosmopoulos, Panagiotis
    REMOTE SENSING, 2023, 15 (01)
  • [6] Dynamic Behavior Forecast of an Experimental Indirect Solar Dryer Using an Artificial Neural Network
    Becerro, Angel Tlatelpa
    Martinez, Ramiro Rico
    Lopez-Vidana, Erick Cesar
    Palacios, Esteban Montiel
    Segundo, Cesar Torres
    Pacheco, Jose Luis Gadea
    AGRIENGINEERING, 2023, 5 (04): : 2423 - 2438
  • [7] Using a neural network to forecast visitor behavior
    Pattie, DC
    Snyder, J
    ANNALS OF TOURISM RESEARCH, 1996, 23 (01) : 151 - 164
  • [8] Forecast of seismic aftershocks using a Neural Network
    Lin, FC
    Elhassan, N
    Hassan, A
    Yousif, A
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1796 - 1799
  • [9] Global and Diffuse Solar Radiation Characteristics of Bangkok and its Forecast Using Artificial Neural Network
    Chawphongphang, Natthanan
    Chaiwiwatworakul, Pipat
    Chirarattananon, Surapong
    International Energy Journal, 2022, 22 (04): : 339 - 356
  • [10] Energy and peak load forecast models using neural network for fast developing area
    Phimphachan, S
    Chamnongthai, K
    Kumhom, P
    Jittiwarangkul, N
    Sangswang, A
    IEEE INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES 2004 (ISCIT 2004), PROCEEDINGS, VOLS 1 AND 2: SMART INFO-MEDIA SYSTEMS, 2004, : 389 - 393