Forecast of solar energy resource by using neural network methods

被引:0
|
作者
Fiorin, Daniel V. [1 ]
Martins, Fernando R. [2 ]
Schuch, Nelson J. [1 ]
Pereira, Enio B. [2 ]
机构
[1] Inst Nacl Pesquisas Espaciais, Ctr Reg Sul Pesquisas Espaciais, Santa Maria, RS, Brazil
[2] Inst Nacl Pesquisas Espaciais, Ctr Ciencia Sistema Terrestre, Sao Jose Dos Campos, SP, Brazil
来源
关键词
solar energy; artificial neural networks; atmospheric modeling; numeric mesoscale models; RADIATION; MODEL; MM5;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This work aims at discussing the artificial neural networks (ANN) and some applications in renewable energy assessment. First, the paper describes the statistical relevance of this tool in different areas of knowledge and the main ANN concepts and configurations. Finally, the paper presents and discusses the use of ANN for the solar energy assessment in Brazil by using data collected in SONDA sites operated by the Center for Earth System Science of the Brazilian Institute for Space Research. The results show that ANN can provide reliable estimates with better performance than other statistical tools.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Application of the Deep Convolutional Neural Network to the Forecast of Solar Flare Occurrence Using Full-disk Solar Magnetograms
    Park, Eunsu
    Moon, Yong-Jae
    Shin, Seulki
    Yi, Kangwoo
    Lim, Daye
    Lee, Harim
    Shin, Gyungin
    ASTROPHYSICAL JOURNAL, 2018, 869 (02):
  • [12] Solar Radio-Burst Forecast Based on a Convolutional Neural Network
    Q. Ma
    Q. F. Du
    S. W. Feng
    Y. C. Hou
    W. Z. Ji
    C. S. Han
    Solar Physics, 2022, 297
  • [13] Solar Radio-Burst Forecast Based on a Convolutional Neural Network
    Ma, Q.
    Du, Q. F.
    Feng, S. W.
    Hou, Y. C.
    Ji, W. Z.
    Han, C. S.
    SOLAR PHYSICS, 2022, 297 (10)
  • [14] Using Chaotic Neural Network to Forecast Stock Index
    Ning, Bo
    Wu, Jiutao
    Peng, Hui
    Zhao, Jianye
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 1, PROCEEDINGS, 2009, 5551 : 870 - +
  • [15] Volatility forecast using hybrid Neural Network models
    Kristjanpoller, Werner
    Fadic, Anton
    Minutolo, Marcel C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (05) : 2437 - 2442
  • [16] Rainfall forecast using a neural network and a genetic algorithm
    Ito, S
    Mitsukura, Y
    Fukumi, M
    Akamatsu, N
    KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 812 - +
  • [17] Methods of improvement of energy consumption forecasting using an artificial neural network
    Piotrowski, Pawel
    PRZEGLAD ELEKTROTECHNICZNY, 2007, 83 (06): : 75 - 77
  • [18] Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods
    Ghadami, Nasim
    Gheibi, Mohammad
    Kian, Zahra
    Faramarz, Mahdieh G.
    Naghedi, Reza
    Eftekhari, Mohammad
    Fathollahi-Fard, Amir M.
    Dulebenets, Maxim A.
    Tian, Guangdong
    SUSTAINABLE CITIES AND SOCIETY, 2021, 74
  • [19] Forecast of Solar Irradiance Using Chaos Optimization Neural Networks
    Cao, Shuanghua
    Weng, Wenbing
    Chen, Jianbo
    Liu, Weidong
    Yu, Guoqing
    Cao, Jiacong
    2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, : 2246 - +
  • [20] USING NEURAL NETWORKS TO FORECAST RENEWABLE ENERGY RESOURCES
    Pena, Rafael
    Medina, Aurelio
    NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : 401 - 404