Using a neural network to forecast visitor behavior

被引:59
|
作者
Pattie, DC [1 ]
Snyder, J [1 ]
机构
[1] COLORADO STATE UNIV,DEPT MKT,FT COLLINS,CO 80523
关键词
neural network; time series forecasts; back-propagation; measures of accuracy; validation;
D O I
10.1016/0160-7383(95)00052-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
This study compares classical time series forecasting techniques with an emerging neural network model. The issues of data integrity, accuracy, the use of appropriate error measures, and the reliability and validation of results are highlighted. The operational aspects of forecasting with a neural network are analyzed using a data set from the US National Park Service. The study shows that the Census II decomposition and the neural network technique are the most accurate models when forecasting 12 months ahead. Results indicate that the neural network model is a valid alternative to classical forecasting techniques in tourism science.
引用
收藏
页码:151 / 164
页数:14
相关论文
共 50 条
  • [1] Using a neural network to forecast inflation
    Aiken, M
    [J]. INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 1999, 99 (7-8) : 296 - 301
  • [2] Using a neural network to forecast inflation
    Aiken, Milam
    [J]. Industrial Management and Data Systems, 1999, 99 (07): : 296 - 301
  • [3] Forecast of seismic aftershocks using a Neural Network
    Lin, FC
    Elhassan, N
    Hassan, A
    Yousif, A
    [J]. ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1796 - 1799
  • [4] Dynamic Behavior Forecast of an Experimental Indirect Solar Dryer Using an Artificial Neural Network
    Becerro, Angel Tlatelpa
    Martinez, Ramiro Rico
    Lopez-Vidana, Erick Cesar
    Palacios, Esteban Montiel
    Segundo, Cesar Torres
    Pacheco, Jose Luis Gadea
    [J]. AGRIENGINEERING, 2023, 5 (04): : 2423 - 2438
  • [5] Volatility forecast using hybrid Neural Network models
    Kristjanpoller, Werner
    Fadic, Anton
    Minutolo, Marcel C.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (05) : 2437 - 2442
  • [6] Using Chaotic Neural Network to Forecast Stock Index
    Ning, Bo
    Wu, Jiutao
    Peng, Hui
    Zhao, Jianye
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 1, PROCEEDINGS, 2009, 5551 : 870 - +
  • [7] Rainfall forecast using a neural network and a genetic algorithm
    Ito, S
    Mitsukura, Y
    Fukumi, M
    Akamatsu, N
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 812 - +
  • [8] Sunspot behavior forecast using neural networks approaches
    Premebida, Sthefanie
    Pechebovicz, Denise
    Camargo, Thiago
    Nazario, Henrique
    Soy, Vinicios
    Baroncini, Virginia
    de Morais, Erikson
    Siqueira, Hugo
    Oliva, Diego
    Martins, Marcella
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2020, : 696 - 700
  • [9] Forecast of paroxysmal atrial fibrillation using a deep neural network
    Gilon, Cedric
    Gregoire, Jean-Marie
    Bersini, Hugues
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [10] Financial Time Series Forecast Using Neural Network Ensembles
    Tarsauliya, Anupam
    Kala, Rahul
    Tiwari, Ritu
    Shukla, Anupam
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT I, 2011, 6728 : 480 - 488