Quantized Output-Feedback Control for Unmanned Marine Vehicles With Thruster Faults via Sliding-Mode Technique

被引:59
|
作者
Hao, Li-Ying [1 ]
Yu, Ying [1 ]
Li, Tie-Shan [2 ,3 ]
Li, Hui [4 ]
机构
[1] Dalian Maritime Univ, Marine Elect Engn Coll, Dalian 116026, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[3] Dalian Maritime Univ, Nav Coll, Dalian 116026, Peoples R China
[4] Dalian Maritime Univ, Informat Sci & Technol Coll, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Attitude control; Quantization (signal); Vehicle dynamics; Marine vehicles; Feedback control; Velocity measurement; Simulation; Quantized output feedback; sliding-mode technique; thruster faults; unmanned marine vehicles (UMVs); UNCERTAIN LINEAR-SYSTEMS; INPUT QUANTIZATION; TRACKING CONTROL; TOLERANT CONTROL; SHIP;
D O I
10.1109/TCYB.2021.3050003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article is concerned with the quantized output-feedback control problem for unmanned marine vehicles (UMVs) with thruster faults and ocean environment disturbances via a sliding-mode technique. First, based on output information and compensator states, an augmented sliding surface is constructed and sliding-mode stability through linear matrix inequalities can be guaranteed. An improved quantization parameter dynamic adjustment scheme, with a larger quantization parameter adjustment range, is then given to compensate for quantization errors effectively. Combining the quantization parameter adjustment strategy and adaptive mechanism, a novel robust sliding-mode controller is designed to guarantee the asymptotic stability of a closed-loop UMV system. As a result, a smaller lower bound of the thruster fault factor than that of the existing result can be tolerated, which brings more practical applications. Finally, the comparison simulation results have illustrated the effectiveness of the proposed method.
引用
收藏
页码:9363 / 9376
页数:14
相关论文
共 50 条
  • [21] Integral Sliding Mode Output Feedback Control for Unmanned Marine Vehicles Using T-S Fuzzy Model with Unknown Premise Variables and Actuator Faults
    Wang, Yang
    Yang, Xin
    Hao, Liying
    Li, Tieshan
    Chen, C. L.
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (06)
  • [22] Distributed output-feedback formation tracking control for unmanned aerial vehicles
    He, Lei
    Sun, Xiuxia
    Lin, Yan
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (16) : 3919 - 3928
  • [23] Quantized feedback sliding-mode control: An event-triggered approach
    Zheng, Bo-Chao
    Yu, Xinghuo
    Xue, Yanmei
    AUTOMATICA, 2018, 91 : 126 - 135
  • [24] Model-Free Output-Feedback Sliding-Mode Control Design for Piezo-Actuated Stage
    Yeh, Yi-Liang
    Pan, Hsuan-Wei
    Shen, Yuan-Hong
    MACHINES, 2023, 11 (02)
  • [25] Discrete output feedback sliding-mode control with integral action
    Lai, NO
    Edwards, C
    Spurgeon, SK
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2006, 16 (01) : 21 - 43
  • [26] Output feedback and dynamical sliding-mode control of power converters
    Cortes, Domingo
    Alvarez, Jaime
    Alvarez, Joaquin
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2011, 98 (04) : 505 - 519
  • [27] Fault Detection for Nonlinear Non-affine Systems via Sliding-Mode Output-Feedback and HOSM Differentiator
    Rios, H.
    Punta, E.
    Fridman, L.
    2014 13TH INTERNATIONAL WORKSHOP ON VARIABLE STRUCTURE SYSTEMS (VSS), 2014,
  • [28] Quantized output feedback stabilization of uncertain systems with input nonlinearities via sliding mode control
    Zheng, Bo-Chao
    Yang, Guang-Hong
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (02) : 228 - 246
  • [29] A Robust Output-Feedback Control for the Cart-Pole System: A Super-Twisting Sliding-Mode approach
    Ovalle, Luis
    Rios, Hector
    Llama, Miguel
    2018 XX CONGRESO MEXICANO DE ROBOTICA (COMROB), 2018,
  • [30] Output-feedback second-order sliding-mode control of uncertain linear systems with relative degree 2
    Wang, N.
    Xu, W.
    Chen, F.
    IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (04): : 880 - 886