Regular phase operator and SU(1,1) coherent states of the harmonic oscillator

被引:5
|
作者
Varro, Sandor [1 ,2 ]
机构
[1] Hungarian Acad Sci, Inst Solid State Phys & Opt, Wigner Res Ctr Phys, H-1525 Budapest, Hungary
[2] ELI ALPS, ELI Hu Nkft, H-6720 Szeged, Hungary
关键词
harmonic oscillator; phase operator; SU(1,1) coherent states; HOLSTEIN-PRIMAKOFF REALIZATION; QUANTUM PHASE; WIGNER FUNCTION; PROBABILITY-DISTRIBUTION; ANGLE VARIABLES; NUMBER; QUANTIZATION; SPACE; REPRESENTATION; DISTRIBUTIONS;
D O I
10.1088/0031-8949/90/7/074053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new solution is proposed to the longstanding problem of describing the quantum phase of a harmonic oscillator. In terms of an 'exponential phase operator', defined by a new 'polar decomposition' of the quantized amplitude of the oscillator, a regular phase operator is constructed in the Hilbert-Fock space as a strongly convergent power series. It is shown that the eigenstates of the new 'exponential phase operator' are SU(1,1) coherent states associated to the Holstein-Primakoff realization. In terms of these eigenstates the diagonal representation of phase densities and a generalized spectral resolution of the regular phase operator are derived, which are very well suited to our intuitive pictures of classical phase-related quantities.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] BERRY PHASE FOR THE SU(1,1) COHERENT STATE
    FAN, HY
    ZAIDI, HR
    CANADIAN JOURNAL OF PHYSICS, 1988, 66 (11) : 978 - 980
  • [32] SU(1,1) coherent states as Bessel-Gauss states
    Hacyan, S.
    REVISTA MEXICANA DE FISICA, 2008, 54 (06) : 451 - 453
  • [33] Quantum metrology with SU(1,1) coherent states in the presence of nonlinear phase shifts
    Berrada, K.
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [34] ON THE STATISTICS OF SU(1,1)(Q) AND SU(2)(Q) COHERENT STATES
    JING, SC
    FAN, HY
    MODERN PHYSICS LETTERS A, 1995, 10 (08) : 687 - 694
  • [35] Entangled coherent states for systems with SU(2) and SU(1,1) symmetries
    Wang, XG
    Sanders, BC
    Pan, SH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (41): : 7451 - 7467
  • [36] Maximally Entangled SU(1,1) Semi Coherent States
    Obada, A. -S. F.
    Ahmed, M. M. A.
    Ali, Hoda A.
    Abd-Elnabi, Somia
    Sanad, S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (04) : 1425 - 1437
  • [37] Statistical properties of the nonlinear SU(1,1) coherent states
    Song, TQ
    Fan, HY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (05) : 593 - 596
  • [38] THE UNIVERSAL PROPAGATOR FOR AFFINE [OR SU(1,1)] COHERENT STATES
    KLAUDER, JR
    TOME, WA
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) : 3700 - 3709
  • [39] Maximally Entangled SU(1,1) Semi Coherent States
    A.-S. F. Obada
    M. M. A. Ahmed
    Hoda A. Ali
    Somia Abd-Elnabi
    S. Sanad
    International Journal of Theoretical Physics, 2021, 60 : 1425 - 1437
  • [40] EVOLUTION OF SU(1,1) COHERENT STATES IN HARMONIC-OSCILLATORS WITH TIME-DEPENDENT MASSES
    GERRY, CC
    PLUMB, MF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (17): : 3997 - 4011